- 解锁阿里云E-MapReduce:大数据处理的超能力秘籍
云资源服务商
阿里云云计算人工智能云原生
一、引言在数字化浪潮汹涌澎湃的当下,大数据已然成为推动各行业创新发展的核心驱动力。从电商平台精准的个性化推荐,到金融机构严密的风险评估,再到医疗领域高效的疾病预测,大数据的应用场景无处不在,深刻地改变着我们的生活与工作方式。在这片充满机遇与挑战的大数据领域中,阿里云E-MapReduce宛如一颗璀璨的明星,占据着举足轻重的地位。它凭借强大的大数据处理能力、卓越的性能表现以及丰富的功能特性,为企业和
- MapReduce原理详解:大数据处理的基石与实战应用
AI天才研究院
ChatGPT实战ChatGPTAI大模型应用入门实战与进阶mapreduce大数据ai
MapReduce原理详解:大数据处理的基石与实战应用关键词:MapReduce、大数据处理、原理、算法、实战应用摘要:本文深入探讨了MapReduce这一在大数据处理领域具有基石地位的技术。首先介绍了MapReduce的背景,包括其目的、适用读者、文档结构和相关术语。接着详细阐述了核心概念、算法原理、数学模型,通过Python代码进行了算法的详细说明。然后给出了项目实战案例,从开发环境搭建到代码
- Hadoop的部分用法
覃炳文20230322027
hadoophive大数据分布式
前言Hadoop是一个由Apache基金会开发的开源框架,它允许跨多个机器使用分布式处理大数据集。Hadoop的核心是HDFS(HadoopDistributedFileSystem)和MapReduce编程模型。1.Hadoop环境搭建在开始使用Hadoop之前,你需要搭建Hadoop环境。这通常包括安装Java、配置Hadoop环境变量、配置Hadoop的配置文件等步骤。1.1环境准备在开始安
- Hadoop 发展过程是怎样的?
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介2003年,美国加州大学洛杉矶分校教授李彦宏博士发明了一种分布式文件系统——GFS(GoogleFileSystem)。由于该文件系统设计得足够简单,可以适应大规模数据集存储需求,在此基础上演化出多种应用,包括MapReduce、BigTable、PageRank等,并成为当时互联网公司的标配技术之一。2004年,Google发布了第一版Hadoop项目,定位是
- Hadoop 版本进化论:从 1.0 到 2.0,架构革命全解析
拾光师
大数据后端
Hadoop版本hadoop1.x版本由三部分组成Common(辅助工具)HDFS(数据存储)MapReduce(计算和资源调度)存在的问题JobTracker同时具备了资源管理和作业控制两个功能,成为了系统的最大瓶颈采用了master/slave结构,master存在单点问题,一旦master出现故障,会导致整个集群不可用采用了基于槽位的资源分配模型,将槽位分为了Mapslot和Reducesl
- 头歌 MapReduce的编程开发-排序
敲代码的苦13
头歌mapreduce电脑大数据
任务描述本关任务:根据用户行为数据,编写MapReduce程序来统计出商品点击量排行。相关知识排序概述在MapReduce的Shuffle的过程中执行了三次排序,分别是:map中的溢写阶段:根据分区以及key进行快速排序。map中合并溢写文件:将同一分区的多个溢写文件进行归并排序,合成一个大的溢写文件。reduce输入阶段:将同一分区,来自不同maptask的数据文件进行归并排序。在MapRedu
- Hadoop等大数据处理框架的Java API
扬子鳄008
Javahadoopjava大数据
Hadoop是一个非常流行的大数据处理框架,主要用于存储和处理大规模数据集。Hadoop主要有两个核心组件:HDFS(HadoopDistributedFileSystem)和MapReduce。此外,还有许多其他组件,如YARN(YetAnotherResourceNegotiator)、HBase、Hive等。下面详细介绍Hadoop及其相关组件的JavaAPI及其使用方法。HadoopHad
- 从 0 到 Offer!大数据核心面试题全解析,答案精准拿捏面试官(hadoop篇)
浅谈星痕
大数据
1.什么是Hadoop?Hadoop是一个开源的分布式系统基础架构,用于存储和处理大规模数据集。它主要包含HDFS(HadoopDistributedFileSystem)分布式文件系统、MapReduce分布式计算框架以及YARN(YetAnotherResourceNegotiator)资源管理器。HDFS负责数据的分布式存储,将大文件分割成多个数据块存储在不同节点上;MapReduce用于分
- MapReduce
2401_8554978
mapreduce大数据
MapReduce原理与组成一、MapReduce组件及任务Mapper(映射器)任务:处理输入数据并生成键值对。每个输入记录被转换成一个或多个键值对。工作原理:Mapper接收输入的分片(InputSplit),通常是文件的一部分,然后根据业务逻辑将这些数据转换为键值对。例子:假设我们要统计文本中每个单词出现的次数,Mapper可以将每一行文本分割成单词,并输出每个单词作为键,值设为1。Redu
- 什么是MapReduce
ThisIsClark
大数据mapreduce大数据
MapReduce:大数据处理的经典范式什么是MapReduce?MapReduce是一种编程模型和软件框架,用于大规模数据集(通常大于1TB)的并行处理。它由Google在2004年提出,后来成为ApacheHadoop项目的核心计算引擎。MapReduce通过将计算任务分解为两个主要阶段——Map(映射)和Reduce(归约)——来实现分布式计算。核心思想MapReduce的核心设计原则可以概
- Spark 学习【一】
Spark基本概念MapReduce存在的缺陷编写难度大不能很好充分利用系统内存一个作业多个MR任务嵌套不友好(每一个task都是jvm进程级别创建销毁开销都很大、每一次都要涉及磁盘或dfs或db和网络的IO)(期望以pipeline流水线的方式从头到尾)只能离线处理数据处理读数据(read)–>规整(ETL)–>写(write)将业务系统的数据经过抽取(Extract)、清洗转换(Transfo
- Hadoop MapReduce作业提交流程源码精讲:主线方法、设计模式与调试实战
北漂老男人
MapReducehadoopmapreduce设计模式
HadoopMapReduce作业提交流程源码精讲:主线方法、设计模式与调试实战一、前言HadoopMapReduce是大数据计算生态的基础。深入理解其作业提交的源码流程,不仅有助于故障排查和性能优化,也是大数据工程师进阶和面试的必备技能。本文将以源码为主线,结合流程图、设计模式、参数说明和调试技巧,全面剖析MapReduce客户端提交作业的每个核心环节,助你掌握底层原理与实战方法。二、作业提交方
- 深入理解 Hadoop MapReduce 调度原理与 YARN 架构
北漂老男人
MapReducehadoopmapreduce架构学习方法
深入理解HadoopMapReduce调度原理与YARN架构作者:标签:大数据、Hadoop、YARN、MapReduce、调度器一、前言在大数据领域,Hadoop是最重要的分布式计算平台之一。随着数据规模的增长,Hadoop从1.x到2.x发生了巨大变革,核心就是引入了YARN资源调度框架。本文将结合图示,详细梳理HadoopMapReduce的调度原理与YARN的工作机制。二、Hadoop1.
- 什么是Hadoop Yarn
ThisIsClark
大数据hadoop大数据分布式
HadoopYARN:分布式集群资源管理系统详解1.什么是YARN?YARN(YetAnotherResourceNegotiator)是ApacheHadoop生态系统中的资源管理和作业调度系统,最初在Hadoop2.0中引入,取代了Hadoop1.0的MapReduce1(MRv1)架构。它的核心目标是提高集群资源利用率,并支持多种计算框架(如MapReduce、Spark、Flink等)在同
- 全面解析Hadoop配置文件:架构、调整与最佳实践
秦道衍
本文还有配套的精品资源,点击获取简介:Hadoop作为一个关键组件在分布式计算中处理和存储大量数据,而其配置文件则是保证系统正常运行和性能优化的核心。文章详细探讨了Hadoop配置文件的作用,包括核心配置文件及其内容,并阐述如何根据实际需求进行适当调整。同时,介绍了针对HDFS、MapReduce和YARN的主要配置文件,并通过实例说明如何细化设置以满足性能和资源管理的需求。最后,文章分享了一些最
- 大数据基础——大数据处理架构Hadoop
皮皮大卫
大数据hadoop大数据
一、Hadoop是什么?(1)Hadoop是Apache软件基金会旗下的一个开源分布式计算平台,为用户提供了系统底层细节透明的分布式基础架构(2)Hadoop是基于Java语言开发的,具有很好的跨平台特性,并且可以部署在廉价的计算机集群中(3)Hadoop的核心是分布式文件系统HDFS(HadoopDistributedFileSystem)和MapReduce(4)Hadoop被公认为行业大数据
- MapReduce 程序详解
Hadoop的第一课总是MapReduce,但是往往我们每次都是使用自带的例子跑一遍MapReduce程序,今天总与自己写了一个完整的程序。技术有限,多多指教。1.导Jar包,将Hadoop的Jar导入到你的工程2.开始写自己的主类,分为3个类。第一个类WordcountMapperpackagecn.itcast.bigdata.mr.wcdemo;importjava.io.IOExcepti
- MapReduce技术详解
暴躁哥
大数据技术mapreduce大数据
MapReduce技术详解MapReduce是一个分布式计算框架,用于大规模数据集的并行处理。本文将详细介绍MapReduce的工作原理、编程模型、优化策略以及最佳实践。1.MapReduce概述1.1基本概念分布式计算框架大规模数据处理自动并行化容错机制数据本地化1.2核心特性高可靠性高扩展性高容错性数据本地化简单编程模型1.3应用场景日志分析数据挖掘机器学习搜索引擎数据统计2.工作原理2.1执
- Hive sql全方位优化详解
sunxunyong
hivesqlhadoop
HSQL优化Hive作为大数据领域常用的数据仓库组件,在平时设计和查询时要特别注意效率。影响Hive效率的几乎从不是数据量过大,而是数据倾斜、数据冗余、job或I/O过多、MapReduce分配不合理等等。对Hive的调优既包含对HiveSQL语句本身的优化,也包含Hive配置项和MR方面的调整。列裁剪和分区裁剪最基本的操作。所谓列裁剪就是在查询时只读取需要的列,分区裁剪就是只读取需要的分区。以我
- 史上最全Hive面试题(10w字完整版)
zh_19995
hive
1、下述SQL在Hive、SparkSql两种引擎中,执行流程分别是什么,区别是什么HiveonMapreducehive的特性:hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapR
- 头歌 MapReduce的编程开发-合并
敲代码的苦13
头歌mapreduce大数据
头歌MapReduce的编程开发-合并任务描述:本关任务:根据课程信息数据、学生信息数据与学员成绩数据,编写MapReduce程序来将三个数据文件合并为一个文件。相关知识概述:合并是MapReduce最为常见的操作,将多个文件合并为一个文件或者将多个文件进行连接操作,最终返回一个文件。使用map端合并或者使用reduce端合并都是可以进行合并操作。使用map端合并,先在setup()方法中读取文件
- 基于mapreduce的气候分析系统设计与实现
赵谨言
python论文毕业设计经验分享python
标题:基于mapreduce的气候分析系统设计与实现内容:1.选题依据1.1.选题背景随着全球气候变化问题日益严峻,气候数据的分析与研究变得至关重要。气候数据具有海量、多源、异构等特点,传统的数据处理技术在处理如此大规模的气候数据时面临着效率低下、计算能力不足等问题。例如,气象卫星每天会产生数以PB级别的观测数据,包括温度、湿度、气压等多个维度的信息。而这些数据的有效分析对于气候模型的建立、气象灾
- 黑马-hive学习笔记(1)
霜 杀 百 草
hive学习笔记hive学习笔记
一、hadoop介绍1.hadoop定义是一个分布式的大数据平台,这个平台上会有很多的组件,HDFS,Mapreduce,hive都是它生态的一部分,HDFS是一个数据存储系统,Mapreduce是一个计算引擎,hive是一个数据仓库2.Hadoop集群Hadoop集群是一种分布式大数据存储和处理系统,主要由Hadoop文件系统(HDFS)和Hadoop资源管理器(YARN)组成,同时还常配合一些
- Hadoop 三巨头:大数据界的搬砖天团
AAA建材批发王师傅
大数据hadoop分布式
各位同学好,今天咱来唠唠大数据领域的"老大哥"Hadoop。这玩意儿就像大数据界的基建狂魔,而它的三大核心组件——HDFS、MapReduce和YARN,堪称分布式计算界的"搬砖天团"。咱今天就用接地气的方式,讲讲这三位大佬是怎么在数据海洋里搞建设的。一、HDFS:分布式仓库的"货架管理员"首先说说HDFS(HadoopDistributedFileSystem),这东西本质上就是个超级大仓库,但
- Hive的索引使用如何优化?
安审若无
hivehadoop数据仓库
Hive索引优化全面指南:类型、创建与性能策略一、Hive索引概述与核心价值Hive作为基于Hadoop的数据仓库工具,其索引机制不同于传统数据库,主要通过建立数据映射关系减少数据扫描范围。索引的核心价值在于:减少IO开销:避免全表扫描,精准定位数据块加速查询响应:对频繁过滤/排序字段建立索引可提升10-100倍查询速度优化资源分配:减少MapReduce任务数据处理量二、Hive索引类型详解1.
- Hbase集群部署(三个节点)
河西帝王蟹
hbasezookeeperhadoop
概述HBASE–HBase–HadoopDatabase,是一个高可靠性、高性能、面向列、可伸缩、实时读写的分布式数据库–利用HadoopHDFS作为其文件存储系统,利用HadoopMapReduce来处理HBase中的海量数据,利用Zookeeper作为其分布式协同服务–主要用来存储非结构化和半结构化的松散数据(列存NoSQL数据库)Hbase的架构图如下所示1、Client包含访问HBase的
- Hive的基本操作技巧
rit8432499
hivehadoop数据仓库
Hive是一个基于Hadoop的数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。下面是一些Hive的基本操作技巧:创建数据库和表:在Hive中,你可以创建数据库和表。
- 深入学习 Apache Spark:从入门到精通
mckim_
笔记学习大数据spark
引言随着大数据时代的到来,数据处理和分析的需求日益增长。ApacheSpark是一个快速、通用、可扩展的分布式计算引擎,它不仅支持批处理,也支持流处理,并且提供了丰富的API接口来简化开发。本文将带你走进Spark的世界,了解它的核心概念、工作原理以及如何在实际项目中应用,特别关注使用Java语言进行开发。一、为什么选择Spark?速度:相比传统的MapReduce框架,Spark可以达到10倍甚
- Hive终极性能优化指南:从原理到实战
社恐码农
Hivehive性能优化hadoop
摘要:本文系统总结Hive在生产环境的核心调优手段,涵盖执行引擎选择、存储优化、SQL技巧、资源调配及数据倾斜解决方案,附可复用的参数配置与实战案例。一、执行引擎优化:突破MapReduce瓶颈启用Tez/Spark引擎优势:DAG执行减少中间落盘,降低延迟30%~60%配置:SEThive.execution.engine=tez;--或sparkSEThive.prewarm.enabled=
- Spark(四) SQL
小雨光
大数据spark
一、简介SparkSQL是Spark用来处理结构化数据的一个模块,它提供了2个编程抽象:DataFrame和DataSet,并且作为分布式SQL查询引擎的作用。之前Hive是将hql转换成MapReduce然后放在集群上执行,简化了编写MapReduce的复杂性,但是由于MapReduce执行的效率比较慢,所以产生了SparkSQL,它是将SQL转换成RDD,然后提交到集群执行,效率就会变快。二、
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =