- 智慧城市的安全密码:商用密码如何守护万物互联?
南京首传信安科技有限公司
密码应用智慧城市商用密码密码安全
目录一、筑牢网络通信安全防线1.网络身份可信认证2.通信传输全程加密二、守护数据全生命周期安全1.数据存储加密防护2.数据安全使用与共享3.数据完整性保障三、赋能核心应用场景安全1.智慧政务2.智慧交通3.智慧医疗4.智慧能源(电网)5.公共安全与应急四、构建统一密码服务支撑体系体系化密码安全防护框架智慧城市需建设集约化密码基础设施五、首传信安-防护方案六、未来发展趋势七、总结智慧城市依托物联网、
- 推荐文章:探索深度学习的不确定性边界 —— SDE-Net 开源项目解析
史多苹Thomas
推荐文章:探索深度学习的不确定性边界——SDE-Net开源项目解析SDE-NetCodeforpaper:SDE-Net:EquippingDeepNeuralnetworkwithUncertaintyEstimates项目地址:https://gitcode.com/gh_mirrors/sd/SDE-Net在当今的人工智能领域,深度神经网络(DNN)已经成为推动技术创新的基石。然而,其预测的
- 入门pytorch-联邦学习
四代机您发多少
pytorch人工智能python
本文联邦学习的代码引用于https://github.com/shaoxiongji/federated-learning本篇文章相当于带大家读一遍联邦学习的代码,同时加深了大家对联邦学习和Pytorch框架的理解。这里想简单介绍一下联邦学习。联邦学习说白了,就是假如有NNN个数据拥有者F1,...,FN{F_1,...,F_N}F1,...,FN,他们希望使用这些数据来训练机器学习模型,但是又各
- 报告下载丨北京大学:2025年DeepSeek在教育和学术领域的应用场景与案例(上)报告下载丨德勤:2025年生成式AI档案报告下载丨SuperCLUE 中文大模型基准测评 2025
智能计算研究中心
人工智能
该报告全面探讨了DeepSeek在教育和学术领域的应用。DeepSeek在2024-2025年推出的模型引发国际关注,其通过提升推理能力、全量开源、降低成本及国产自主研发等优势,在教育行业推动了范式革命。报告涵盖了从学前教育到特殊教育的各个阶段,列举了高校如北京大学的学科专业问答工具、北大青鸟的实训平台等应用案例。为教育工作者提供了系统指导,有助于推动教育创新,培养适应AI时代的各类人才。
- Java开发的智能新时代——如何利用AI工具提升编程效率
inscode_055
最新接入DeepSeek-V3模型,点击下载最新版本InsCodeAIIDE标题:Java开发的智能新时代——如何利用AI工具提升编程效率引言在当今快速发展的科技时代,Java作为一门广泛应用的编程语言,在企业级应用、Web开发、移动应用等领域占据着重要地位。然而,随着项目复杂度的增加和开发周期的缩短,传统的开发方式已难以满足现代开发的需求。幸运的是,智能化的工具软件如InsCodeAIIDE正逐
- Java 开发的智能化革命——如何借助最新工具提升编程效率
inscode_014
最新接入DeepSeek-V3模型,点击下载最新版本InsCodeAIIDE标题:Java开发的智能化革命——如何借助最新工具提升编程效率在当今快速发展的科技时代,Java作为一门广泛应用的编程语言,依然保持着其强大的生命力和广泛的影响力。无论是企业级应用、Web开发还是移动应用开发,Java都扮演着不可或缺的角色。然而,随着项目复杂度的增加和技术更新换代的速度加快,Java开发者们面临着前所未有
- 长尾形分布论文速览【80-119】
木木阳
Long-tailed人工智能
为便于理解和应用,以下将30篇关于长尾分布的研究文献按主题进行分类整理。每一大类包含相应的工作,帮助我们从整体上把握各方向的研究进展。1.长尾半监督学习与伪标签优化Paper90:Uncertainty-awareSamplingforLong-tailedSemi-supervisedLearning提出了一种动态阈值选择方法(UDTS),能有效改善尾部分类性能,适用于不平衡类别的半监督学习。P
- 嵌入模型 vs 大语言模型:语义理解能力的本质区别与应用场景
chenkangck50
AI大模型语言模型人工智能机器学习
嵌入模型vs大语言模型:语义理解能力的本质区别与应用场景(实战视角)一句话总结嵌入模型的“理解”是向量表示和相似性匹配,适合做召回;大语言模型的“理解”是上下文+逻辑+世界知识综合判断,适合做分析与生成。重点是可以结合prompt和本身具有的知识两类模型的本质区别能力项嵌入模型(如BGE、SBERT)大语言模型(如GPT、GLM、DeepSeek)输出形式向量(如768维)自然语言文本(如答案、解
- 在NVIDIA Jetson和RTX上运行Google DeepMind的Gemma 3N:多模态AI的边缘计算革命
扫地的小何尚
人工智能边缘计算GPUNVIDIAnlpcuda
在NVIDIAJetson和RTX上运行GoogleDeepMind的Gemma3N:多模态AI的边缘计算革命文章目录在NVIDIAJetson和RTX上运行GoogleDeepMind的Gemma3N:多模态AI的边缘计算革命引言:多模态AI进入边缘计算时代文章结构概览第一章:Gemma3N模型技术架构深度解析1.1Gemma3N模型概述与发展历程1.1.1模型架构的核心设计原则1.1.2多模态
- Vue 响应式数据传递:ref、reactive 与 Provide/Inject 完全指南
Vue响应式数据传递:ref、reactive与Provide/Inject完全指南理解如何在不同组件层级间传递响应式数据是Vue开发的关键技能。我将深入探讨ref和reactive配合provide/inject的使用场景和最佳实践。响应式数据与跨层级传递架构提供数据无法传递数据provideinject根组件App.vue中间组件Container.vueDeepChild.vue在多层组件嵌
- C语言教学大变革!DeepSeek如何改变高职院校编程课堂?
武汉唯众智创
c语言开发语言程序设计Deepseek
一、引言在当今数字化转型的浪潮中,程序设计与分析能力已成为高职教育中不可或缺的核心竞争力。作为编程语言的基础,C语言不仅训练学生的计算思维,还培养其算法实现能力。然而,当前高职院校的C语言教学面临诸多挑战,如实践环节薄弱、学生创新能力不足等。DeepSeek等新一代智能编码支持系统的出现,为这一现状带来了转机。该系统融合了深度神经网络与语义解析技术,能够智能生成代码、优化缺陷检测、解构程序逻辑,并
- DeepMind 发布 AlphaGenome,1 秒内完成所有模态和细胞类型的变异效应预测
hyperai
谷歌DeepMind的Alpha系列再添新成员——AlphaGenome,其能够更全面、准确地预测人类DNA序列中单个变异或突变,如何影响一系列调控基因的生物过程。AlphaGenome模型以长达100万个碱基对的DNA序列为输入,预测数千种与其调控活性相关的分子属性,同时还可以通过比较变异与未变异序列的预测结果,评估基因变异或突变的影响。该模型建立在DeepMind此前的基因组模型Enforme
- 1143 Lowest Common Ancestor (30 分)
Thelowestcommonancestor(LCA)oftwonodesUandVinatreeisthedeepestnodethathasbothUandVasdescendants.Abinarysearchtree(BST)isrecursivelydefinedasabinarytreewhichhasthefollowingproperties:Theleftsubtreeofan
- 《论文阅读》GPT-3是否会产生移情对话?一种新的情境示例选择方法和用于生成同理心对话的自动评估度量 ICCL 2022
365JHWZGo
情感对话论文阅读gpt-3共情回复上下文学习提示学习大模型
《论文阅读》GPT-3是否会产生移情对话?一种新的情境示例选择方法和用于生成同理心对话的自动评估度量ICCL2022前言贡献PromptIn-contextlearningSITSMEMOSITSM新的自动指标实验前言亲身阅读感受分享,细节画图解释,再也不用担心看不懂论文啦~无抄袭,无复制,纯手工敲击键盘~今天为大家带来的是《DoesGPT-3GenerateEmpatheticDialogues
- 1143 Lowest Common Ancestor (30 分)
依久_
PAT甲
Thelowestcommonancestor(LCA)oftwonodesUandVinatreeisthedeepestnodethathasbothUandVasdescendants.Abinarysearchtree(BST)isrecursivelydefinedasabinarytreewhichhasthefollowingproperties:Theleftsubtreeofan
- 1151 LCA in a Binary Tree (30)
Thelowestcommonancestor(LCA)oftwonodesUandVinatreeisthedeepestnodethathasbothUandVasdescendants.Givenanytwonodesinabinarytree,youaresupposedtofindtheirLCA.InputSpecification:Eachinputfilecontainsonete
- 人工智能-基础篇-2-什么是机器学习?(ML,监督学习,半监督学习,零监督学习,强化学习,深度学习,机器学习步骤等)
weisian151
人工智能人工智能机器学习学习
1、什么是机器学习?机器学习(MachineLearning,ML)是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析等数学理论。其核心目标是让计算机通过分析数据,自动学习规律并构建模型,从而对未知数据进行预测或决策,而无需依赖显式的程序指令。基本思想:通过数据驱动的方式,使系统能够从经验(数据)中改进性能,形成对数据模式的抽象化表达。基本概念:模型:模型是对现实世界现
- 作为创业者,DeepSeek爆火带来的七点启示
墨菲安全
人工智能DeepSeek软件供应链安全
这个春节DeepSeek真的是火到不行,什么概念呢?当年某大厂春晚砸了20多个亿的营销费用,所带来的影响力和品牌曝光可能不及DeepSeek在这个春节期间的1/2。DeepSeek不仅出圈了,而且是形成了全球影响力。我们墨菲安全也是一家在行业内并没有太高知名度的创业公司,也是在埋头做产品的阶段。DeepSeek这个事情对我们的触动是非常之大的,甚至我都开始认为DeepSeek这一代的企业和企业家们
- Keras环境复现代码(三)
yanyiche_
keras深度学习人工智能
DQN雅达利Breakout强化学习实验要求明确实验目的:学习和实现深度Q学习(DQN),这是一种结合了Q学习和深度神经网络的强化学习算法,用于解决复杂的决策问题。清楚实验原理:1、深度Q学习(DeepQ-Network)将卷积神经网络与Q学习结合,解决高维视觉输入的强化学习问题:2、经验回放:将状态转换存储到缓冲区,打破数据相关性,稳定训练。3、目标网络:定期更新目标Q值计算网络,减少训练中的目
- Python复制方法“=/copy/deepcopy”的区别
superlitong
笔记经验pythonlist列表机器学习人工智能
1、当复制的值是不可变对象(数值,字符串,元组)时,=/copy/deepcopy三者没有区别。测试代码:importcopya='abcdefgh'b=ac=copy.copy(a)d=copy.deepcopy(a)print(a,b,c,d)print(id(a),id(b),id(c),id(d))a+='x'#相当于重新赋值,把a这个标签重新贴到了一个新的箱子print(a,b,c,d)
- python中copy和deepcopy详细区别
jialun0116
python列表python
python中copy和deepcopy在python中,标识一个对象唯一身份的是:对象的id(内存地址),对象类型,对象值。deepcopy是真正意义上的复制,深拷贝,被复制对象完全复制一遍作为独立的新个体,新开辟一块空间。等于赋值,浅拷贝,不会产生独立对象,只是对原有数据块打上新标签,其中一个标签改变,数据块就会变化。copy仅拷贝对象本身,浅拷贝不会对其中的子对象进行拷贝,对子对象进行修改也
- 【python】赋值操作(=)、切片、copy()、deepcopy()经常分不清。
叶阿猪
pythonpython数据结构开发语言
切片(Slicing)、copy()(浅拷贝)和deepcopy()在Python中都涉及复制操作,但复制的深度和方式有所不同。而赋值操作不涉及复制,只是改变变量与对象之间的绑定关系。本文将详细讲解这几种方式的区别。一、赋值操作(=)定义:将值或引用绑定到变量名上。特性:赋值操作不会创建值的副本,它只是将变量名与现有的值或引用关联起来。如果赋值的值是可变对象(如列表、字典等),则变量名将引用该对象
- 智能办公与科研革命:ChatGPT+DeepSeek大模型在论文撰写、数据分析与AI建模中的实践指南
jwwkyjspt
机器学习SCI论文人工智能chatgpt语言模型机器学习
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- 如何用DeepSeek做动画和视频
诸葛务农
后端深度学习
1、DeepSeek本身不能生成视频需要结合其他AI工具如RunwayML、Pika、Labs、Sora(如果可用),或者传统软件如Blender、AdobeAfterEffects等。可以使用DeepSeek生成脚本、分镜描述或代码片段,用于其他工具的动画制作。还要注意使用友好型的AI工具,如使用Canva制作简单动画,或使用文本生成视频的工具如Synthesia。可能更适合没有专业背景的用户。
- AI新高度——DEEPSEEK
数字隐士·赛博智者
ai
DeepSeek是由中国人工智能公司「深度求索」开发的一系列高性能大语言模型产品及相关技术体系,其定位为通用人工智能(AGI)探索者,目前已发展成为全球增长最快、性能领先的开源模型之一。下面是关于DeepSeek的详细介绍:一、DeepSeek的开发者与背景公司名称:杭州深度求索人工智能基础技术研究有限公司(成立于2023年)核心支持:由中国知名对冲基金「高毅资产」创立并提供资金与技术资源
- Python 机器学习实战:泰坦尼克号生还者预测 (从数据探索到模型构建)
程序员阿超的博客
Pythonpython机器学习开发语言泰坦尼克号KaggleScikit-learn实战教程
引言:挑战介绍泰坦尼克号的沉没是历史上最著名的海难之一。除了其悲剧色彩,它还为数据科学提供了一个经典且引人入胜的入门项目。Kaggle平台上的“Titanic:MachineLearningfromDisaster”竞赛,要求我们利用乘客数据来预测哪些人更有可能在这场灾难中幸存。这是一个典型的二元分类问题:目标变量Survived只有两个值,0(遇难)或1(生还)。这个项目之所以经典,是因为它涵盖
- 常见机器学习算法与应用场景
计算机软件程序设计
知识科普机器学习算法人工智能
当然可以。下面是对常见机器学习算法的全面详细阐述,包括每种算法的基本原理、特点以及典型应用场景。1.监督学习(SupervisedLearning)1.1线性回归(LinearRegression)原理:通过拟合一条直线来表示输入和输出之间的关系,适用于预测连续值输出。特点:简单易懂,计算速度快,但只能捕捉线性关系。应用场景:房价预测股票价格预测销售额预测1.2逻辑回归(LogisticRegre
- Learning Fully Convolutional Networks for Iterative Non-blind Deconvolution论文阅读
青铜锁00
#退化论文阅读深度学习论文阅读图像处理
LearningFullyConvolutionalNetworksforIterativeNon-blindDeconvolution1.研究目标与实际问题1.1研究目标1.2实际意义2.创新方法与模型设计2.1核心框架:迭代式梯度域处理2.1.1模型架构2.2关键技术实现2.2.1梯度域去噪网络2.2.2解卷积模块(核心公式实现)2.2.3损失函数设计2.2.4超参数端到端学习2.3与传统方法
- LoRA 实战指南:NLP 与 CV 场景的高效微调方法全解析
fairymt
产品经理的AI秘籍自然语言处理人工智能机器学习
大模型已成AI应用的“标配”,但高昂的训练和部署成本让很多企业望而却步。LoRA(Low-RankAdaptation)作为一种轻量级微调方案,正成为NLP与CV场景中低成本定制的利器。本文详细通过详细介绍LoRA的核心原理、在文本与图像任务中的应用场景、主流工具框架与实践方式,帮助你快速掌握这项高性价比技术。国产生态实战:基于LLaMA-Factory+DeepSeek+LoRA+FastAPI
- 让AI自己学会“怎么学”——元学习,才是高效训练的终极武器!
Echo_Wish
Python进阶人工智能学习
让AI自己学会“怎么学”——元学习,才是高效训练的终极武器!朋友们,今天咱不聊ChatGPT,不聊大模型黑魔法,也不玩Prompt咒语。我想聊一个比“怎么训模型”更底层、更值得思考的问题:如果我们能让模型自己学会怎么更快、更聪明地学习,是不是就能少走很多弯路?这,就是元学习(MetaLearning)要解决的事儿。说白了,元学习是AI给AI上培训课的过程。咱们天天琢磨怎么喂模型数据、调超参、搞迁移
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C