- Elasticsearch索引模板:自动化索引管理
搜索引擎技术
搜索引擎实战elasticsearch自动化jenkinsai
Elasticsearch索引模板:自动化索引管理关键词:Elasticsearch、索引模板、自动化管理、索引映射、索引设置、生命周期管理、数据建模摘要:本文深入解析Elasticsearch索引模板的核心原理与实践方法,通过系统化的步骤演示如何利用索引模板实现索引的自动化创建与统一管理。内容涵盖模板结构设计、映射与设置配置、动态字段处理、优先级策略、实战案例及最佳实践,帮助读者掌握高效管理大规
- 跨平台iOS上架中的四大误区与实战解决:一支非Mac团队的完整复盘
2501_91600747
httpudphttpswebsocket网络安全网络协议tcp/ip
作为一支跨平台移动开发团队,我们最近在负责一个电商工具App项目时,要将iOS版本发布到AppStore。全员日常使用Windows或Linux,只有一台云Mac用于打包,但无法大规模支持全程上架。这个过程中我们踩到了不少坑,也摸索出一套跨平台、工具组合完成iOS上架的解决方案。以下从实际遇到的四个误区说起,分享如何利用多种工具各司其职,顺利完成App提交。误区1:没有Mac无法完成iOS证书申请
- 基于昇腾910B部署Qwen3-embedding-8B模型(通过vllm 推理引擎部署)
萌新--加油
embedding人工智能经验分享
目前基于知识库搭建,会涉及到embedding和rerank模型,目前阿里通义千问Qwen3-embedding-8B模型在网上测评效果还不错,本文基于vllm部署Qwen3-embedding-8B模型,使用的国产化算力910B2-64G单卡资源。1、环境要求:软件支持版本CANN>=8.1.RC1torch-npu>=2.5.1torch>=2.5.1Python>=3.9,<3.122、to
- Qwen3 Embedding 结构-加载-训练 看透模型设计哲学
看透一个顶级AI句向量模型的设计秘密,从文件结构到加载原理,再到其背后的训练哲学。1Qwen3-Embedding模型结构拆解说明:目录包含了运行一个基于Transformer的句向量模型所需的所有组件文件类别核心文件作用核心模型model.safetensors,config.jsonmodel.safetensors存储了模型所有训练好的权重分词器tokenizer.json,vocab.js
- containerd
一、理论Containerd是容器底层运行时,c/s架构。docker运行需要containerd作为容器底层运行时。kubernetes1.24版本之前(不包含1.24版本)支持docker、containerd等容器底层运行时,1.24版本之后(包含1.24版本)默认容器底层运行时就是containerd。containerd由storage、metadata、runtimes三大组件组成st
- 领域驱动设计(Domain-Driven Design DDD)——模型驱动设计的构造块1
阿波罗.2012
软件架构系统架构架构设计模式软件构建
一、概述为了保证软件实现简洁且与模型保持一致,不管实际情况如何复杂,必须运用建模和设计的最佳实践,即设计模式GoF等。领域驱动设计能够使模型和程序紧密结合一起,互相促进对方的效用。这种结合要求我们注意每个设计的细节。这种设计风格沿续了“职责驱动设计”的原则,也用利了其他面向对象的设计原则如“SOLID”原则等为了使领域驱动设计过程更加灵活,开发人员需理解上述原则是如何支持Model-DrivenD
- LLM归因的几种评估方式
liliangcsdn
深度学习人工智能语言模型算法
参考ASurveyofLargeLanguageModelsAttribution,LLM归因有以下几种有效的评估方式。1人工评估归因错误的检测难度大,所以评估主要依赖人工评价进行归因检测。人工评估虽然精度高,但成本高也耗时。标注过程中还需要标注员谨慎对待,而且需要手工验证。为提高可靠性,针对一个(问题,答案,归因文本),可能需要多个标注员同时进行标注,只有大部分人认为正确归因,该(问题,答案,归
- LLM归因的限制和挑战
LLM归因虽然能提升任务性能和模型的可解释性,但面临多个方面的限制。参考ASurveyofLargeLanguageModelsAttribution,LLM归因的限制和挑战总结如下1)难以确定何时以及如何进行归因LLM区分一般知识(可能不需要引文)和专业知识(需要归因)是一项微妙的任务,难以达成一致。2)归因的准确性无法得到保证LLM可能会将生成的答案和不相关或错误的来源关联起来,这种错误归因可
- 增刊第5章:模型性能优化
技术与健康
人工智能python
第5章:模型性能优化完成DeepSeek大模型的部署和基本运维后,下一步就是对其进行性能优化。在大模型推理场景下,性能优化主要关注两个核心指标:推理速度(Latency)和吞吐量(Throughput)。本章将详细介绍几种关键的优化技术,帮助您在现有硬件条件下,榨干模型的每一滴性能。5.1量化策略进阶(INT4/INT8)在第2章中我们简要介绍了量化,这里我们将深入探讨量化策略。**量化(Quan
- 学习java基础:java开发常用技术
molihuaya
学习javajava开发技术
基础部分1.线程和进程的区别线程三个基本状态:就绪、执行、阻塞线程五个基本操作:创建、就绪、运行、阻塞、终止进程四种形式:主从式、会话式、消息或邮箱机制、共享存储区方式进程是具有一定功能的程序关于某次数据集合上的一次运行活动,是系统进行资源分配和调度的一个独立单位。一个进程包含多个线程。线程是进程的一个实体,是CPU调度和分配的基本单元。2.JSP四大域对象和九大内置对象四大域对象:PageCon
- [探索Tavily Search API:为AI代理提供实时准确搜索的利器]
探索TavilySearchAPI:为AI代理提供实时准确搜索的利器引言在现代AI应用程序中,实时和准确的数据获取对AI代理(如大型语言模型)是至关重要的。TavilySearchAPI是一种专为AI代理设计的搜索引擎,提供实时、准确和事实性的搜索结果。本篇文章将详细介绍TavilySearchAPI的功能、集成方法与使用示例。主要内容TavilySearchAPI概述TavilySearchAP
- Python 快速入门教程:构建一个 A2A Agent
@井九
python开发语言
欢迎来到Agent2Agent(A2A)Python快速入门教程!在本教程中,您将使用PythonSDK探索一个简单的“回声”A2A服务器。这将向您介绍A2A服务器的基本概念和组件。然后,您将看到一个集成了大型语言模型(LLM)的更高级示例。本实践指南将帮助您理解:A2A协议背后的基本概念。如何使用SDK为A2A开发设置Python环境。AgentSkills(智能体技能)和AgentCards(
- Kotlin协程与异步编程
协程通过轻量级线程模型和挂起机制,彻底改变了Android开发和服务器端编程的异步处理方式。今天我们将聚焦于Kotlin协程这一现代异步编程的核心工具。下面直接开始一、协程基础架构解析1.1协程的轻量级特性协程并非传统线程,而是通过状态机实现的协作式任务调度单元。单个线程可承载数千个协程,其内存占用仅为线程的1/100。例如:funmain()=runBlocking{repeat(10_000)
- 人脸识别接口&sdk,两张人脸相似度比对
人工智能时代,人脸识别技术正在被广泛应用于金融支付、安防监控、身份验证等多个领域,基于深度学习算法于海量样本训练,人脸识别接口以高精度、低延迟的特性出现在大众视野,成为开发者和企业用户集成人脸识别功能的首要选择之一。人脸识别接口技术服务原理:格式转换:支持BMP、JPG、PNG、TIF等多种常见图像格式;尺寸调整与压缩:建议图像大小控制在200KB左右,确保传输效率与识别质量;图像增强:自动旋转、
- RT-DETR改进|爆改模型|涨点|使用VMamba作为骨干网络(附代码+修改教程)
爆改模型
网络深度学习人工智能计算机视觉
一、文本介绍本文修改的模型是RT-DETR,在原本的RT-DETR中,使用ResNet作为骨干网络,本文使用最新的VMamba(VisualStateSpaceModel)替换ResNet作为RT-DETR的骨干网络。VMamba是一种全新的视觉框架,VMamba结合了CNNs和ViTs的优势,同时优化了计算效率,能够在保持全局感受野的情况下实现线性复杂度。为了解决方向敏感性问题,VMamba引入
- 家用充电桩远程监控安全管理系统解决方案
蓝蜂物联网
物联网远程监控边缘计算物联网
家用充电桩远程监控安全管理系统解决方案在当今电动汽车日益普及的背景下,家用充电桩的安全管理成为了广大车主关注的重点问题。为了实现对充电桩的高效、精准、远程监控,一套完善的家用充电桩远程监控安全管理系统解决方案应运而生。本方案旨在通过先进的物联网技术、云计算、大数据分析以及人工智能等科技手段,构建一个集实时监测、异常预警、故障诊断、数据统计、远程控制于一体的智能化平台,确保充电桩的安全运行及用户充电
- Android Studio在移动开发中的性能优化案例分析
移动开发前沿
androidstudio性能优化androidai
AndroidStudio在移动开发中的性能优化案例分析关键词:AndroidStudio、移动开发、性能优化、内存管理、CPU优化、APK大小优化、工具链摘要:本文深入解析AndroidStudio在移动开发中的核心性能优化能力,通过内存管理、CPU调度、APK体积优化等典型场景的实战案例,系统讲解Profiler、Lint、Gradle等工具链的深度应用。结合具体代码示例和数学模型,分析内存泄
- 为什么 Python 是 AI 的首选语言?
文章目录一、简洁优雅,易于上手二、丰富的库和框架1.数据处理与分析2.数据可视化3.机器学习与深度学习框架三、强大的社区支持四、跨平台性和可移植性五、与其他语言的互操作性文章配套代码已上传,点击查看:https://download.csdn.net/download/2501_92578370/91180848在人工智能(AI)技术飞速发展的今天,编程语言的选择对AI开发者来说至关重要。当你翻开
- HTTP 协议深入理解
大曰编程
java面试http网络协议网络
在Web服务与API设计中,HTTP协议是客户端与服务器通信的基石。本文从协议演进、核心机制、缓存策略、安全特性及面试高频问题五个维度,系统解析HTTP的底层原理与工程实践。一、HTTP协议演进与版本差异1.1版本特性对比版本发布年份核心改进局限性HTTP1.01996基础请求-响应模型,支持GETPOSTHEAD方法无持久连接,每次请求需建立TCP连接HTTP1.11999持久连接(Connec
- AI 时代下,普通人不能错过的五大变现机会
Jasonakeke
AI人工智能大数据
AI时代下,普通人不能错过的五大变现机会关键词:轻资产低门槛强需求机会1:知识付费——借“AI”做知识博主核心逻辑:AI降低知识生产门槛AI这个领域有巨大的科普红利和流量红利操作步骤:定位细分领域用AI工具快速生成内容选择平台机会2:AI自媒体——流量即现金变现模式:自媒体商单广告分成带货私域转化核心逻辑:目前AI存在巨大的科普红利和流量红利+AI能够提升创作效率爆款公式:选题:AI工具测评+具体
- 【AI Infra】基础学习汇总篇
逆羽飘扬
AI基础知识人工智能学习
系列综述:目的:本系列是个人整理为了学习训练框架优化的,整理期间苛求每个知识点,平衡理解简易度与深入程度。来源:材料主要源于【DeepEP官方介绍】进行的,每个知识点的修正和深入主要参考各平台大佬的文章,其中也可能含有少量的个人实验自证。结语:如果有帮到你的地方,就点个赞和关注一下呗,谢谢!!!请先收藏!!!,后续继续完善和扩充(●’◡’●)文章目录一、分布式与并行基础分布式计算高性能并行GPU硬
- 【Python基础】13 知识拓展:CPU、GPU与NPU的区别和联系
智算菩萨
python开发语言人工智能
引言:处理器大战背后的技术革命在人工智能蓬勃发展的今天,我们经常听到CPU、GPU、NPU这些术语,但你是否真正理解它们之间的区别和联系?作为Python开发者,我们更关心的是:在什么场景下选择哪种处理器?如何在Python中充分发挥它们的性能优势?这篇文章将从技术原理出发,结合Python实战代码,深入解析这三种处理器的特点、应用场景和发展趋势,帮助你在面对不同计算任务时做出最优选择。第一章:C
- 【Python基础】15 Python并发编程进阶
智算菩萨
python人工智能
在现代软件开发中,随着多核处理器的普及和网络应用的复杂化,并发编程已经成为提升程序性能的关键技术。Python作为一门优雅且强大的编程语言,提供了多种并发编程方案,包括多线程、多进程和异步编程。然而,很多开发者在面对具体场景时,往往不知道该选择哪种方案,或者对这些技术的底层原理缺乏深入理解。本文将深入探讨Python并发编程的三大核心技术,从底层原理到实际应用,通过详实的案例分析帮助读者掌握在不同
- MIT 6.S184 Lec01 Flow and Diffusion Models
克斯维尔的明天_
机器学习人工智能
MIT6.S184Lec01FlowandDiffusionModels本节中,我们将描述如何通过模拟一个适当构造的微分方程来获得所需的转换。例如,流匹配和扩散模型分别涉及模拟常微分方程(ODE)和随机微分方程(SDE)。因此,本节的目标是定义和构建这些生成模型。具体来说,我们首先定义ODE和SDE,并讨论它们的模拟。其次,我们描述如何使用深度神经网络对ODE/SDE进行参数化。从中推导出流模型和
- 【设计模式05】原型模式
鼠鼠我呀2
设计模式设计模式原型模式
前言通过clone来实例化对象,适用于复杂大对象的创建,一般用不着UML类图无代码示例packagecom.sw.learn.pattern.B_create.d_prototype;importjava.lang.reflect.Array;importjava.util.*;importjava.util.Scanner;publicclassMain{/***广告主可以在页面上复制已有订单模
- BAAI/BGE-VL多模态模型部署、原理、代码详解(实现图像文本混合检索),包含BEG-VL多模态模型的本地部署详细步骤及代码原理解析
令令小宁
python语言模型自然语言处理nlp人工智能
本文包含BGE-VL多模态模型的本地部署详细步骤及代码原理解析文章目录前言一、模型下载二、计算流程解析1.BGE-VL-base/Large2.BGE-VL-MLLM-s1/s2三、总结前言提示:这里可以添加本文要记录的大概内容:包含四个模型及数据集,数据集未开源,四个模型可以分别下载:其中,BGE-VL-base/Large是基于CLIP训练的模型,BGE-VL-MLLM-S1/S2是基于LLM
- 本地部署Jina-CLIP v2:多语言多模态文本图像向量模型(包含一些踩坑记录和技巧)
令令小宁
jina语言模型python
JinaCLIPv2:Jina-CLIP-v2是一个全新的通用多语言多模态向量模型,该模型基于jina-clip-v1和jina-embeddings-3构建,实现了一些关键改进。关于Jina-CLIP-v2的更多介绍点此可了解模型特点模型开源链接:https://huggingface.co/jinaai/jina-clip-v2在它的开源链接的介绍中,我们可以得知,Jina-CLIP-v2的参
- [精选] 2025最新MySQL和PostgreSQL区别、迁移、安全、适用场景全解析
猫头虎
数据库技术专区#MySQL专栏#PostgreSQL专栏mysqlpostgresql安全运维云原生数据库容器
[精选]2025最新MySQL和PostgreSQL区别、迁移、安全、适用场景全解析在当前的数据库技术领域,MySQL和PostgreSQL作为两大主流数据库,拥有各自独特的优势和应用场景。随着技术的不断演进,特别是2025年的最新动态和趋势,两者在功能、迁移、性能、安全性等方面都有了一定的变化和优化。因此,本文将通过详细的对比和分析,帮助初学者更好地理解这两种数据库,帮助你做出选择,或者顺利进行
- AutoGen行业应用与典型场景实践
摘要AutoGen作为分布式多智能体AI系统,已在金融、医疗、教育、智能客服等行业落地应用。本文系统梳理AutoGen在各行业的应用模式、业务流程、Python实战、最佳实践与常见问题,助力中国AI开发者高效构建行业级AI解决方案。1.AutoGen行业应用全景与价值支持多智能体协作,适配复杂业务流程易于集成主流大模型与行业工具分布式部署,满足高可用与弹性扩展需求典型行业:金融风控、医疗问答、教育
- 从 Alpha 到 Final:Python 各阶段版本到底该怎么用?
三金C_C
Pythonpython版本生命周期
主流的Python是由PythonSoftwareFoundation(PSF,Python软件基金会)主导的:PSF是一个非营利组织负责维护Python官方语言规范、标准库、社区基础设施它主导的实现版本是我们日常使用的:CPythonPython的版本阶段(版本周期)。这些阶段是官方正式定义的,适用于每一个Python主版本(比如3.12、3.13、3.14…)Python版本的四大阶段Pyth
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><