- 【EI会议征稿】东北大学主办第三届机器视觉、图像处理与影像技术国际会议(MVIPIT 2025)
诗远Yolanda
图像处理计算机视觉考研视频机器学习论文阅读
一、会议信息大会官网:www.mvipit.org官方邮箱:
[email protected]会议地点:辽宁沈阳主办单位:东北大学会议时间:2025年9月27日-9月29日二、征稿主题集中但不限于“机器视觉、图像处理与影像技术”等其他相关主题。机器视觉:视觉中的统计机器学习;立体视觉标定;几何建模与处理;人脸识别与手势识别;早期视觉和生物学启发的视觉;光流法和运动追踪;图像分割和图像分类;基于模型的视觉
- MCP模型上下文协议:AI人工智能模型训练的自动化调参
AI天才研究院
AI人工智能与大数据人工智能自动化运维ai
MCP模型上下文协议:AI人工智能模型训练的自动化调参关键词:MCP模型、自动化调参、AI训练、超参数优化、上下文协议、机器学习、深度学习摘要:本文深入探讨MCP模型上下文协议在AI模型训练自动化调参中的应用。MCP(ModelContextProtocol)是一种创新的自动化调参框架,通过上下文感知和动态参数调整机制,显著提升模型训练效率和性能。文章将从理论基础、算法实现、数学原理到实际应用进行
- [Python] -基础篇6-Python中的字符串处理技巧合集
踏雪无痕老爷子
Pythonpython开发语言
Python中的字符串类型是非常常用的基础类型。不管是处理文本、数据分析,还是系统管理等场景,都不能离开字符串的操作。本文将分类整理Python字符串的常用技巧和方法,帮助你接地气地接触字符串处理的本质。1.基础操作1.1字符串切片s="Hello,Python!"print(s[0:5])#Helloprint(s[-7:])#Python!1.2字符串连接和处理name="Alice"gree
- 文件同步·使用同步软件来管理文件(外接大脑)
让我安静会
配置与安装zotero
个人使用文件同步软件分享。管理文件/信息V1:Obsidian(信息图文:外接大脑;知识链接的形式)Zotero(文章存储:与Obsidian连接)Notion(各种文件存储:可分类、搜索、文字记录)【手机联动】坚果云(1G·小文件临时存储)【手机联动】Gitee(5G)阿里云盘(600G·比较大的文件)外接硬盘其他资源(不必存储:增加负担)管理文件/信息V2:Obsidian(信息图文:外接大脑
- 深度解析基于贝叶斯的垃圾邮件分类
大千AI助手
人工智能Python#OTHER分类数据挖掘人工智能机器学习算法贝叶斯Bayes
贝叶斯垃圾邮件分类的核心逻辑是基于贝叶斯定理,利用邮件中的特征(通常是单词)来计算该邮件属于“垃圾邮件”或“非垃圾邮件”的概率,并根据概率大小进行分类。它是一种朴素贝叶斯分类器,因其假设特征(单词)之间相互独立而得名(虽然这在现实中不完全成立,但效果通常很好)。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的
- 从零开始:Python实现语音识别的完整教程_副本
AIGC应用创新大全
AI大模型与大数据技术AI人工智能与大数据应用开发MCP&Agent云算力网络python语音识别开发语言ai
从零开始:Python实现语音识别的完整教程关键词:Python、语音识别、语音转文本、音频处理、机器学习、深度学习、自然语言处理摘要:本文将带你从零开始学习如何使用Python实现语音识别功能。我们将从基础概念讲起,逐步深入到实际代码实现,涵盖音频处理、特征提取、模型训练等关键环节,最终构建一个完整的语音识别系统。无论你是初学者还是有一定经验的开发者,都能从本教程中获得实用的知识和技能。背景介绍
- 面向大语言模型幻觉的关键数据集:系统性综述与分类法
致Great
语言模型人工智能自然语言处理
面向大语言模型幻觉的关键数据集:系统性综述与分类法摘要大语言模型(LargeLanguageModels,LLMs)在自然语言处理的多个领域取得了革命性进展,但其固有的“幻觉”问题——即生成看似合理但与事实不符或与上下文无关的内容——严重制约了其在关键应用中的可靠性与安全性。为了系统性地评估、理解并缓解LLM的幻觉现象,学术界和工业界开发了大量多样化的数据集与基准。本文对大模型幻觉领域的关键数据集
- MySQL 的日志分析
jarenyVO
Mysql数据库
MySQL的日志分析MySQL的日志系统是保证数据一致性、持久性和高可用的核心组件,不同日志各司其职。以下是详细分类和解析:一、事务日志(InnoDB引擎层)1.RedoLog(重做日志)物理格式:循环写入的固定大小文件(默认ib_logfile0、ib_logfile1)核心作用:崩溃恢复:确保事务的持久性(Durability)Write-AheadLogging(WAL):数据页修改前先写r
- 软件测试分类
@旺仔牛奶
功能测试
目录一、按测试技术划分1、白盒测试2、黑盒测试3、灰盒测试二、按测试阶段划分1、单元测试2、集成测试3、系统测试4、验收测试(正式验收测试、Apha测试、Beta测试)三、按被测试对象是否运行划分1、动态测试2、静态测试四、按不同的测试手段划分1、手工测试2、自动化测试五、按软件质量特性内容划分1、功能测试(界面测试)2、可靠性测试3、易用性测试4、性能测试(负载测试、压力测试、并发测试、稳定性测
- 七天学完十大机器学习经典算法-05.从投票到分类:K近邻(KNN)算法完全指南
接上一篇《七天学完十大机器学习经典算法-04.随机森林:群众智慧的机器学习实践》想象一下,你搬进了一个新小区。想知道这个小区整体氛围如何?最直接的方法就是看看你最近的几家邻居是什么样的人——如果邻居们都很安静、整洁,小区大概率不错;如果邻居们深夜喧哗、环境杂乱,你可能就得重新考虑了。K近邻(K-NearestNeighbors,KNN)算法的核心思想,就如同这个观察邻居的过程。它是机器学习中最直观
- 分类预测 | MATLAB实现BP神经网络多特征分类预测
matlab科研社
分类matlab神经网络
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍近年来,随着大数据时代的到来以及计算能力的显著提升,人工智能技术得到了飞速发展。在众多人工智能算法中,反向传播神经网络(BackPropagationNeuralNetwork,BP神经网络)凭借其强大的非
- AI测试方法
二狗子82
ai功能测试测试用例AIGC
1.创建高质量的测试数据集为了验证标签的准确性,需要构建一个丰富的测试数据集。该数据集应包括多种场景和风格的输入文本:正常对话、非正式对话、含有拼写错误或语法问题的文本等。包括模棱两可或复杂情境的文本,看看模型是否能正确分类。确保数据集中有足够的标签种类分布,这样可以测试模型是否能应对不同类别的文本内容。2.多轮对话的上下文跟踪对于涉及多轮对话或长文本的情况,模型需要正确理解整个对话的上下文。例如
- 信息抽取数据集全景分析:分类体系、技术演进与挑战_DEEPSEEK
致Great
分类数据挖掘人工智能
信息抽取数据集全景分析:分类体系、技术演进与挑战摘要信息抽取(IE)作为自然语言处理的核心任务,是构建知识图谱、支持智能问答等应用的基础。近年来,随着深度学习技术的发展和大规模预训练模型的兴起,IE数据集呈现爆发式增长,其分析与评估对模型研发和领域迁移至关重要。本文基于对158个主流IE数据集的系统性梳理,首次提出“信息提取与命名实体识别数据集分类体系”。该体系涵盖8大类别(命名实体识别、关系提取
- 使用Ultralytics YOLO进行数据增强
alpszero
YOLO计算机视觉应用YOLO人工智能机器学习
概述数据增强是计算机视觉领域的一项重要技术,它通过对现有图像进行各种转换,人为地扩展训练数据集。在训练深度学习模型时,数据增强有助于提高模型的鲁棒性,减少过拟合,并增强对真实世界场景的泛化。在训练计算机视觉模型的过程中,数据增强具有多种重要作用:扩展数据集:通过创建现有图像的变体,可以有效增加训练数据集的规模,而无需收集新数据。提高泛化能力:模型学会在各种条件下识别物体,使其在实际应用中更加稳健。
- 算法竞赛备考冲刺必刷题(C++) | 洛谷 P1001 A+B Problem
热爱编程的通信人
c++算法
本文分享的必刷题目是从蓝桥云课、洛谷、AcWing等知名刷题平台精心挑选而来,并结合各平台提供的算法标签和难度等级进行了系统分类。题目涵盖了从基础到进阶的多种算法和数据结构,旨在为不同阶段的编程学习者提供一条清晰、平稳的学习提升路径。欢迎大家订阅我的专栏:算法题解:C++与Python实现!附上汇总贴:算法竞赛备考冲刺
- Java IO流 文件读写详解
Y1_again_0_again
Javajava开发语言
IO流的概念与分类IO(Input/Output)流是Java中用于处理输入输出操作的抽象概念。流可以看作一个数据序列的管道,数据像水流一样在程序与数据源之间传输。JavaIO流主要分为两大类:按流向分类:输入流(InputStream/Reader):用于读取数据输出流(OutputStream/Writer):用于写入数据按数据类型分类:字节流:以字节为单位传输数据(8位)字符流:以字符为单位
- 「分布式事务」之数据一致性模型
呼拉拉呼拉
分布式事务分布式分布式事务分布式系统分布式数据一致性模型
概念 分布式系统中的数据一致性模型定义了在事务处理过程中,系统如何保证数据在不同节点间的正确性和一致性。 本文主要阐述了分布式系统六大类数据一致性模型,相关的概念、特点、缺点、实现方式、常见应用以及简单示例说明。分类 在分布式系统中,一致性模型主要分为六大类:1.强一致性模型(StrongConsistency)2.弱一致性模型(WeakConsistency)3.最终一致性模型(Eventu
- mysql锁机制
weixin_45990219
教程mysql数据库
深入解析MySQL锁机制:从原理到实战场景前言在数据库高并发场景中,锁机制是保障数据一致性和事务隔离性的核心。然而,MySQL中锁的类型繁多,概念抽象,容易让人望而生畏。本文将通过通俗的语言和实际场景,带你彻底理解MySQL中的各种锁机制及其应用。一、锁的由来与分类1.1为什么需要锁?多个事务并发执行时,可能出现脏写、脏读、不可重复读、幻读等问题。例如:场景:A事务修改了某条数据但未提交,B事务读
- Elasticsearch(ES)聚合
思静鱼
#elasticsearchelasticsearchjenkins大数据
Elasticsearch(ES)的聚合(Aggregation)功能类似于SQL中的GROUPBY+聚合函数(如COUNT、AVG、SUM),是进行统计分析的核心机制。聚合(Aggregation)概述Elasticsearch的聚合分为三大类:类别说明Metric聚合计算数值(如:count、avg、sum、max、min)Bucket聚合类似于SQL的GROUPBY,把文档分类Pipelin
- AI人工智能领域知识图谱在深度学习中的应用拓展
AI人工智能领域知识图谱在深度学习中的应用拓展关键词:知识图谱、深度学习、神经网络、图嵌入、知识表示学习、推理机制、应用场景摘要:本文深入探讨了知识图谱与深度学习的融合应用,系统性地分析了知识图谱在深度学习中的关键技术路径和应用场景。文章首先介绍了知识图谱的基本概念和表示方法,然后详细阐述了知识图谱与深度学习结合的多种技术路线,包括图神经网络、知识嵌入和推理机制等。接着通过具体案例展示了知识图谱增
- [pytorch] pytorch_model.bin 和 training_args.bin 的区别
心心喵
pytorch深度学习pytorch神经网络
pytorch_model.bin和training_args.bin是与PyTorch框架和训练过程相关的两个文件。pytorch_model.bin:这是保存了PyTorch模型的二进制文件。在使用PyTorch进行深度学习训练时,经过训练的模型会被保存为这个文件,其中包含了模型的权重参数。这个文件可以被加载到PyTorch中,以便进行推理、评估或继续训练。training_args.bin:
- 【2025最新】AI大模型项目实战教程大揭秘!超详细攻略,手把手带你飞,记得收藏!
大模型教程
人工智能产品经理大模型大模型教程大数据大模型学习程序员
一、大模型开发整理流程1.1、什么是大模型开发我们将开发以大语言模型为功能核心、通过大语言模型的强大理解能力和生成能力、结合特殊的数据或业务逻辑来提供独特功能的应用称为大模型开发。开发大模型相关应用,其技术核心点虽然在大语言模型上,但一般通过调用API或开源模型来实现核心的理解与生成,通过PromptEnginnering来实现大语言模型的控制,因此,虽然大模型是深度学习领域的集大成之作,大模型开
- 【零基础学AI】第9讲:机器学习概述
1989
0基础学AI人工智能机器学习pythonnumpydevops开源
本节课你将学到理解什么是机器学习,以及它与传统编程的区别掌握监督学习、无监督学习的基本概念使用scikit-learn完成你的第一个机器学习项目构建一个完整的iris花朵分类器开始之前环境要求Python3.8+JupyterNotebook或任何PythonIDE需要安装的包pipinstallscikit-learnpandasmatplotlibseaborn前置知识基本的Python语法(
- EasyFeature软件特性四:星云空天大模型
智绘中勘
人工智能深度学习信息可视化
随着智能遥感进入新纪元,数据处理与模型效率的挑战日益成为应用落地的关键瓶颈。EasyFeature软件以星云空天大模型为核心,构建了基于人机智能提示学习的多模态系统。通过海量高质量数据预训练,集成了包括遥感场景分类、快速目标检测、地物分类、变化检测等在内的丰富模型库,提供端到端的智能解译能力。EasyFeature完全实现国产化自主可控,涵盖全栈软硬件支撑与训推一体化流程,确保高效安全。其极简安装
- DiNA:扩张邻域注意力 Transformer
AI专题精讲
Paper阅读transformer人工智能
摘要Transformer正迅速成为跨模态、跨领域和跨任务中应用最广泛的深度学习架构之一。在计算机视觉领域,除了持续发展的纯transformer架构,分层transformer也因其优越的性能和在现有框架中易于集成而受到广泛关注。这类模型通常采用局部化的注意力机制,如滑动窗口的NeighborhoodAttention(NA)或SwinTransformer的ShiftedWindowSelfA
- 解释神经网络的普适逼近定理(面试题200合集,中频、实用)
快撑死的鱼
算法工程师宝典(面试学习最新技术必备)深度学习人工智能
神经网络的普适逼近定理(UniversalApproximationTheorem,UAT)是理解为什么神经网络如此强大和灵活的理论基石之一。它为我们提供了信心,即在某些条件下,一个相对简单的神经网络结构原则上能够模拟出几乎任何复杂的函数。这个定理在深度学习领域中经常被提及,尤其是在讨论模型表达能力的时候。普适逼近定理(UniversalApproximationTheorem)概述普适逼近定理的
- 【CATIA的二次开发35】对象Selection部分属性介绍
江树月华
CATIAVBA二次开发CATIA的VBA二次开发CATIAVBACATIA宏CATIAVBA
在CATIAV5的VBA开发中,Selection对象是用户交互的核心组件,用于管理用户在图形区域或特征树中的选择操作。Selection对象是CATIAVBA中的中央交互枢纽,充当用户界面与程序逻辑之间的桥梁。它代表当前在图形区域或特征树中被选中的元素集合,是自动化操作的基础。一、Selection对象属性和方法二、属性分类概览属性类型作用域主要用途ApplicationObject全局获取当前
- 【CATIA的二次开发36】对象Selection选择集管理部分方法介绍01
江树月华
CATIAVBA二次开发CATIA的VBA二次开发CATIAVBACATIA宏CATIAVBA
在CATIAV5的VBA开发中,Selection对象是用户交互的核心组件,用于管理用户在图形区域或特征树中的选择操作。Selection对象是CATIAVBA中的中央交互枢纽,充当用户界面与程序逻辑之间的桥梁。它代表当前在图形区域或特征树中被选中的元素集合,是自动化操作的基础。一、Selection对象属性和方法二、方法分类概览分类方法核心功能选择集管理Add,Remove,Remove2,Cl
- 互换性与标准化
念致达
互换性与技术测量机电专业必修课程
互换性与标准化一、互换性定义分类作用主要内容二、标准化一、互换性定义机械产品中的同一规格的一批零件或部件,任取其中一件,不需作任何挑选、调整或辅助加工就能进行装配,并能保证满足机械产品的使用性能要求的一种特性。分类分类几何参数互换零部件的尺寸、形状、位置、表面质量等几何参数具有互换性功能互换零部件的物理性能、化学性能和力学性能具有互换性按互换性程度分:完全互换性(绝对互换性)零件在装配或更换时,不
- r语言 回归分析 分类变量_R语言下的PSM分析分类变量处理与分析步骤
weixin_39715834
r语言回归分析分类变量r语言清除变量
最近学习了PSM,我选择了用R去跑PSM,在这过程中遇到了许多问题,最后也都一一解决了,写下这个也是希望大家在遇到相同问题的时候能够得到帮助和启发,别的应该不会遇到太难的问题了哈哈。最近我也没做什么,录数据,或者说还在调整心态,最近遇到的事情也比较多,又或者说最近的心态比较乱,晚上也睡不好导致白天也比较烦躁,所以可能还是需要一段时间去好好调整,因此最近更新的也比较慢。不过还是会坚持的。问题阐述:1
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f