- 10个基于Python的计算机视觉实战项目
云博士的AI课堂
基于Python计算机视觉python计算机视觉机器视觉人工智能
10个基于Python的计算机视觉实战项目,涵盖多个领域和应用场景,每个项目均附有GitHub地址、概述、解决的问题及应用场景:1.PCV图像处理与计算机视觉库GitHub地址:jesolem/PCV概述:提供计算机视觉基础算法的Python实现,包括图像分割、直方图均衡化、图像增强等。解决的问题:简化图像处理流程,支持快速实现算法原型。应用场景:学术研究、教学实验、图像预处理任务。2.基于朴素贝
- 鸿蒙系统(HarmonyOS)应用开发之实现瀑布流图片展示效果
伍哥的传说
HarmonyOS资源harmonyos华为前端鸿蒙鸿蒙系统
项目概述科技图库是一款基于鸿蒙系统(HarmonyOS)开发的高品质图片浏览应用,专注于展示精选科技主题图片。应用采用现代化的瀑布流布局,为用户提供流畅、直观的浏览体验,让科技之美尽收眼底。主要功能1.瀑布流布局展示自适应网格:采用双列瀑布流布局,根据图片原始比例自动调整显示大小流畅滚动:优化的性能确保即使加载大量图片也能保持流畅的滚动体验优雅加载:加载状态优雅展示,提供良好的用户反馈2.高清图片
- Halcon中如何对特定目标进行定位查找
极客晨风
#Halcon例程项目讲解计算机视觉人工智能图像处理Halconc++
一、项目代码下载项目的完整代码可以通过以下链接进行下载:通过网盘分享的文件:垫片查找.7z链接:https://pan.baidu.com/s/1cexsR99mMWcC2v0k0MJ5LQ?pwd=jkcf提取码:jkcf二、算法流程图像预处理:首先,通过read_image函数读取图像,并利用fast_threshold函数进行图像的阈值化处理。阈值化后的图像会提取出强度值在特定范围内的区域,
- Python编程:缺陷检测图像预处理
倔强老吕
C++与python交互编程pythonopencv计算机视觉
图像预处理是工业缺陷检测系统中的关键环节,直接影响后续检测的准确性。下面将详细介绍一些工业缺陷检测图像预处理流程,包含多种优化技术和实用方法。基础预处理流程importcv2importnumpyasnpfromskimageimportexposureimportmatplotlib.pyplotaspltdefbasic_preprocessing(image_path):"""基础图像预处理
- C#版Halcon:HalconDotNet最详细最全面教程(万字详细总结)
0仰望星空007
C#计算机视觉HalconHalconDotNet
文章目录第一部分:Halcon基础1.Halcon简介Halcon的安装和配置2.Halcon界面和工具图像显示窗口的使用3.图像处理基础图像的表示和存储图像的基本操作4.图像预处理图像增强技术图像去噪方法图像二值化第二部分:Halcon进阶5.形态学操作腐蚀和膨胀开运算和闭运算形态学梯度6.特征提取边缘检测角点检测区域特征第三部分:Halcon高级应用7.模板匹配基于形状的模板匹配基于灰度的模板
- 图片批量去重---(均值哈希、插值哈希、感知哈希、三/单通道直方图)
ghx3110
数据/脚本处理均值算法哈希算法直方图图片去重
一、整体步骤本脚本中,关键步骤包括以下步骤:1、图片加载:脚本会遍历指定的图片目录,将所有图片加载到内存中。2、图像预处理:比较之前,通常需要对图片进行预处理,如调整大小、灰度化或直方图均衡化,以消除颜色、尺寸等因素的影响。3、相似度计算:图像相似度的衡量有很多种方法,如像素级别的差异(均方误差)、结构相似度指数(SSIM)、归一化互信息(NMI)或者哈希算法(如PCA-SIFT、BRIEF等)。
- OpenCV图像亮度和对比度调整
独行侠影
opencv计算机视觉人工智能编程
OpenCV图像亮度和对比度调整在许多计算机视觉应用中,调整图像的亮度和对比度是非常重要的。OpenCV是一个流行的计算机视觉库,它提供了一种方便的方式来更改图像的亮度和对比度。本文将介绍如何使用Python和OpenCV库来调整图像的亮度和对比度,并且会涉及到图像预处理的基础知识。打开图像首先,我们需要打开需要调整亮度和对比度的图像。可以使用cv2.imread()函数打开图像。具体实现代码如下
- Python实例题:基于 TensorFlow 的图像识别与分类系统
狐凄
实例python开发语言
目录Python实例题题目问题描述解题思路关键代码框架难点分析扩展方向Python实例题题目基于TensorFlow的图像识别与分类系统问题描述开发一个基于TensorFlow的图像识别与分类系统,包含以下功能:图像分类模型:基于预训练模型的图像分类器数据处理与增强:图像预处理和数据增强模型训练与评估:自定义数据集上的模型训练API服务:提供图像识别的RESTfulAPI前端界面:用户上传图像并获
- C++/OpenCV 图像预处理与 PaddleOCR 结合进行高效字符识别
whoarethenext
c++opencv开发语言
C++/OpenCV图像预处理与PaddleOCR结合进行高效字符识别在许多实际应用场景中,直接从原始图片中提取文字的准确率可能不尽人意。图像中的噪声、光照不均、角度倾斜等问题都会严重干扰OCR(OpticalCharacterRecognition)引擎的识别效果。本文将详细介绍如何利用C++和强大的计算机视觉库OpenCV对图像进行预处理,然后将处理后的图像送入PaddleOCR的C++预测库
- MATLAB实现的基于SVD的数字图像水印技术
张锦云
本文还有配套的精品资源,点击获取简介:在数字图像处理中,SVD水印技术是一种有效的版权保护方法。它利用SVD算法在MATLAB环境下嵌入和提取水印,确保图像质量的同时隐藏信息。本文介绍了在MATLAB中实现SVD水印的步骤,包括图像预处理、SVD分解、水印嵌入、图像重构、水印提取和代码注释等关键环节。实践中涉及的技术点包括图像处理、SVD函数使用、数据编码策略、数值稳定性和图像质量评估。1.数字图
- 使用Kotlin实现滑块验证码缺口识别的方法及实现步骤
rrrrroottttttt
kotlin开发语言android
滑块验证码是一种用于网站安全验证的常见方式,但攻击者往往能够通过识别滑块验证码的缺口来绕过验证。本文将介绍如何使用Kotlin语言结合图像处理技术,实现对滑块验证码缺口的自动识别,从而提高网站的安全性。正文:步骤一:图像处理首先,我们需要获取滑块验证码的图像,并对其进行预处理。预处理包括图像灰度化、边缘检测等操作,以便后续分析滑块位置和缺口位置。kotlin//图像预处理funpreprocess
- 使用Halcon进行图像预处理的策略
AI_Guru人工智能
计算机视觉图像处理人工智能
图像预处理是机器视觉系统中的一个关键步骤,它有助于提高图像质量,从而使得后续的图像分析和特征提取更加准确。在Halcon中,图像预处理通常包括滤波、对比度增强、归一化、边缘增强等操作。以下是一些使用Halcon进行图像预处理的策略,以及相应的示例代码。图像预处理策略滤波:去除图像噪声,如高斯滤波、中值滤波等。对比度增强:提高图像的对比度,如直方图均衡化、对比度限制自适应直方图均衡化(CLAHE)。
- Halcon 图像预处理算子
、。纯牛奶最单纯* ̄▽ ̄*
计算机视觉人工智能图像处理
在机器视觉领域,图像的预处理算法十分重要。对于一些成像质量较差,受噪声影响较大的场景中,为保证视觉测量,定位,检测效果的稳定性。、往往第一步就是对图像做处理,这里对常用的预处理算法做总结。*腐蚀图像增加暗部,减少亮部gray_erosion_rect(Image,ImageMin,11,11)*膨胀图像增加增加,减少暗部gray_dilation_rect(Image,ImageMax,11,11
- 基于OpenCV和深度学习实现图像风格迁移
E-An居士
opencv深度学习人工智能风格迁移
文章目录引言一、准备工作二、代码实现解析1.读取和显示原始图像2.图像预处理3.加载和运行风格迁移模型4.处理输出结果三、效果展示四、扩展应用五、总结引言图像风格迁移是计算机视觉中一个非常有趣的应用,它可以将一幅图像的内容与另一幅图像的艺术风格相结合。今天我们将介绍如何使用OpenCV的dnn模块加载预训练的深度学习模型,快速实现图像风格迁移效果。一、准备工作首先确保你已经安装了OpenCV库:p
- 多标签分类的激活函数和损失函数
通过幸福的路唯有奋斗
深度学习
刚入门DeepLearning不久,前一段时间一直在学习cifar10的分类,突然最近要做一个多标签的任务,突然有点不知所措,不知从何下手了。于是查阅了一些资料,了解一下多分类任务与多标签分类任务的异同。-多分类任务:只有一个标签,但是标签有多种类别。-多标签分类任务:一条数据可能有一个或者多个标签,比如一个病人的眼底检测报告,它可能被标记患有糖尿病、高血压多个标签。多标签分类任务的特点:1.类别
- 紫光展锐M6780丨Local Dimming——暗夜星河尽收眼底
紫光展锐官方
5G
在上两期,向大家介绍了M6780的AI-PQ与AI-SR技术,今天展锐带大家探索让“夜空中最亮的星”清晰可见的LocalDimming技术。随着电视领域的技术发展,HDR、UHD片源逐渐普及,普通LCD电视难以满足观众对更强对比度、更广动态范围、更高亮度的视觉需求。液晶电视之所以能发光,是依靠背光作为发光源。背光分为主要有两种方式,一种是侧入式背光,另一种则是直下式背光。传统的侧入式背光是把背光源
- 深入理解 transforms.Normalize():PyTorch 图像预处理中的关键一步
述雾学java
pytorch人工智能python
深入理解transforms.Normalize():PyTorch图像预处理中的关键一步在使用PyTorch进行图像分类、目标检测等深度学习任务时,我们常常会在数据预处理部分看到如下代码:python复制编辑transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.5,0.5,0.5],std
- Opencv4 c++ 自用笔记 04 图像滤波与边缘检测
BandieraRosa
opencvc++笔记计算机视觉opencv
图像滤波与边缘检测直接采集到的图像可能带有噪声的干扰,因此去除噪声是图像预处理中十分重要的一步。图像滤波是图像噪声去除的重要方式。图像卷积卷积操作广泛应用于信号处理领域,而图像本质上可以视为一种二维信号数据。卷积过程可以理解为一个卷积模板(卷积核)在图像上逐像素移动,对模板覆盖区域内的像素值进行加权求和,计算结果作为模板中心位置的输出值。为避免卷积输出值超出数据表示范围,通常对卷积模板进行归一化处
- C#Halcon从零开发_Day2_检测圆形物体上的缺损
仙贝大饼
C#联合Halcon从零编程计算机视觉图像处理c#Halcon机器视觉
一、检测缺损的大致步骤1.Blbo分析--定位读取图像、阈值分割、填充、打散、筛选、形态学操作(膨胀腐蚀)、筛选出关心的区域2获取ROI区域图像获取感兴趣的区域图像3.图像预处理将缺陷进行凸显4.图像算法处理提取缺陷5.结果输出二、检测圆形物体上的缺陷实战1.参数设置*获取窗口句柄dev_get_window(WindowHandle)*设置缺陷最小面积minDefectArea:=2002.读取
- 基于simulink的图像处理的智能家居入侵检测系统
xiaoheshang_123
MATLAB开发项目实例1000例专栏计算机视觉人工智能matlabsimulink
目录一、准备工作二、步骤详解第一步:创建Simulink模型第二步:构建图像采集模块第三步:实现图像预处理第四步:设计背景建模与差分第五步:实现特征提取与入侵检测第六步:设计响应机制第七步:搭建用户界面(可选)第八步:运行仿真并分析结果注意事项基于图像处理的智能家居入侵检测系统利用摄像头捕捉图像,并通过图像处理技术分析这些图像以检测是否有未经授权的人员进入。在这个教程中,我们将使用MATLAB和S
- 【图像亮度变换】——图像预处理(OpenCV)
Wendy1441
图像预处理opencv人工智能计算机视觉
目录21图像亮度变换21.1亮度变换21.2线性变换21.2直接像素值修改21图像亮度变换21.1亮度变换对比度调整:图像暗处像素强度变低,图像亮处像素强度变高,从而拉大中间某个区域范围的显示精度。亮度调整:图像像素强度整体变高或者变低。上图中,(a)把亮度调高,就是图片中的所有像素值加上了一个固定值;(b)把亮度调低,就是图片中的所有像素值减去了一个固定值;(c)增大像素对比度(白的地方更白,黑
- 使用MATLAB和Simulink来设计并仿真一个智能家居基于机器视觉的安全监控系统
amy_mhd
matlab智能家居开发语言
目录一、准备工作二、步骤详解第一步:创建Simulink模型第二步:构建图像采集模块第三步:实现图像预处理第四步:设计背景建模与差分第五步:实现特征提取与行为识别第六步:设计响应机制第七步:搭建用户界面(可选)第八步:运行仿真并分析结果注意事项智能家居中基于机器视觉的安全监控系统通过摄像头捕捉图像,并利用图像处理和机器学习算法来分析这些图像,以实现诸如入侵检测、异常行为识别等功能。这种系统可以极大
- 目标检测YOLO实战应用案例100讲-电子元器件缺陷智能检测(续)
林聪木
目标检测YOLO人工智能
目录3电子元器件图像预处理及数据集构建3.1电子元器件图像预处理3.2电子元器件数据集构建3.2.1数据特点3.2.2基于Imgaug的数据扩充方法3.2.3数据标注4基于改进YOLOX的电子元器件缺陷检测方法研究4.1基于YOLOX的检测精度提升改进4.1.1SPP结构的池化替换4.1.2高效通道注意力4.1.3损失函数的改进4.1.4改进YOLOX方法网络结构4.2实验结果及分析4.2.1实验
- 使用MATLAB和Simulink来设计并仿真一个智能家居入侵检测系统
amy_mhd
计算机视觉人工智能
目录一、准备工作二、步骤详解第一步:创建Simulink模型第二步:构建图像采集模块第三步:实现图像预处理第四步:设计背景建模与差分第五步:实现特征提取与入侵检测第六步:设计响应机制第七步:搭建用户界面(可选)第八步:运行仿真并分析结果注意事项基于图像处理的智能家居入侵检测系统利用摄像头捕捉图像,并通过图像处理技术分析这些图像以检测是否有未经授权的人员进入。在这个教程中,我们将使用MATLAB和S
- 使用 OpenCV (C/C++) 通过二值化增强车牌识别
whoarethenext
opencvc语言c++
好的,这是一篇关于使用C/C++和OpenCV进行二值化操作以增强车牌识别功能的Markdown格式文章。使用OpenCV(C/C++)通过二值化增强车牌识别在车牌识别(LPR)系统中,图像预处理是至关重要的一步。清晰、对比度高的图像能够显著提高后续字符分割和识别的准确率。二值化是一种常用的图像预处理技术,它将灰度图像转换为只有黑色和白色两种像素值的二值图像,从而突出目标区域(车牌字符)并抑制背景
- Transformer 架构在目标检测中的应用:YOLO 系列模型解析
水花花花花花
transformer架构目标检测
目录Transformer架构在目标检测中的应用:YOLO系列模型解析一、YOLO模型概述二、YOLO模型的核心架构(一)主干网络(二)颈部结构(三)头部结构三、YOLO模型的工作原理(一)输入图像预处理(二)特征提取与融合(三)边界框预测与类别分类(四)损失函数计算与优化(五)非极大值抑制(NMS)后处理四、YOLO模型的版本演进(一)YOLOv1:开启实时目标检测之门(二)YOLOv2和YOL
- 15-OpenCVSharp —- Cv2.GaussianBlur()函数功能(高斯滤波)详解
X-Vision
#《OpenCV算子系列》计算机视觉opencv人工智能图像处理算法
OpenCV算子专栏OpenCVSharp—Cv2.GaussianBlur()函数详解Cv2.GaussianBlur()是OpenCVSharp中用于图像处理的高斯模糊函数。它的核心功能是通过高斯卷积滤波对图像进行平滑处理,减少噪声,常用于去噪、图像预处理以及边缘检测等任务。1.核心原理与公式高斯模糊的核心原理是对图像进行卷积操作,其中卷积核是基于高斯函数生成的。高斯函数公式:二维高斯函数的数
- 【图像处理基石】OpenCV中都有哪些图像增强的工具?
AndrewHZ
图像处理基石图像处理opencv算法计算机视觉图像增强滤波颜色科学
OpenCV图像增强工具系统性介绍OpenCV提供了丰富的图像增强工具,主要分为以下几类:亮度与对比度调整线性变换(亮度/对比度调整)直方图均衡化自适应直方图均衡化(CLAHE)滤波与平滑高斯滤波中值滤波双边滤波锐化与边缘增强拉普拉斯算子高通滤波非锐化掩蔽(UnsharpMasking)色彩空间变换灰度转换HSV色彩调整颜色平衡高级增强技术伽马校正对数变换幂律变换下面是各种工具的优缺点对比表:工具
- 增强水下图像对比度和边缘的方法
yt94832
html前端
去散射和边缘增强是水下图像从严重细节损失、颜色偏移和模糊中提取的关键步骤。本文提出了一种增强水下图像对比度和边缘的新方法。Image-visibility-improving-master/Images/101.jpg,17096Image-visibility-improving-master/La1_4.jpg,2197Image-visibility-improving-master/La1
- C++、OpenCV标准差讲解
编程思维@
opencv人工智能计算机视觉
图像的均值和标准差,它在图像处理和计算机视觉领域中有多种用途,以下是一些常见的应用场景:一、应用场景1.图像质量评估通过计算图像的均值和标准差,可以评估图像的亮度和对比度。均值可以反映图像的整体亮度,而标准差可以反映图像的对比度。2.图像预处理在进行图像处理之前,了解图像的均值和标准差可以帮助选择合适的预处理方法。例如,可以根据均值和标准差调整图像的亮度和对比度。3.特征提取在机器学习和计算机视觉
- java短路运算符和逻辑运算符的区别
3213213333332132
java基础
/*
* 逻辑运算符——不论是什么条件都要执行左右两边代码
* 短路运算符——我认为在底层就是利用物理电路的“并联”和“串联”实现的
* 原理很简单,并联电路代表短路或(||),串联电路代表短路与(&&)。
*
* 并联电路两个开关只要有一个开关闭合,电路就会通。
* 类似于短路或(||),只要有其中一个为true(开关闭合)是
- Java异常那些不得不说的事
白糖_
javaexception
一、在finally块中做数据回收操作
比如数据库连接都是很宝贵的,所以最好在finally中关闭连接。
JDBCAgent jdbc = new JDBCAgent();
try{
jdbc.excute("select * from ctp_log");
}catch(SQLException e){
...
}finally{
jdbc.close();
- utf-8与utf-8(无BOM)的区别
dcj3sjt126com
PHP
BOM——Byte Order Mark,就是字节序标记 在UCS 编码中有一个叫做"ZERO WIDTH NO-BREAK SPACE"的字符,它的编码是FEFF。而FFFE在UCS中是不存在的字符,所以不应该出现在实际传输中。UCS规范建议我们在传输字节流前,先传输 字符"ZERO WIDTH NO-BREAK SPACE"。这样如
- JAVA Annotation之定义篇
周凡杨
java注解annotation入门注释
Annotation: 译为注释或注解
An annotation, in the Java computer programming language, is a form of syntactic metadata that can be added to Java source code. Classes, methods, variables, pa
- tomcat的多域名、虚拟主机配置
g21121
tomcat
众所周知apache可以配置多域名和虚拟主机,而且配置起来比较简单,但是项目用到的是tomcat,配来配去总是不成功。查了些资料才总算可以,下面就跟大家分享下经验。
很多朋友搜索的内容基本是告诉我们这么配置:
在Engine标签下增面积Host标签,如下:
<Host name="www.site1.com" appBase="webapps"
- Linux SSH 错误解析(Capistrano 的cap 访问错误 Permission )
510888780
linuxcapistrano
1.ssh -v
[email protected] 出现
Permission denied (publickey,gssapi-keyex,gssapi-with-mic,password).
错误
运行状况如下:
OpenSSH_5.3p1, OpenSSL 1.0.1e-fips 11 Feb 2013
debug1: Reading configuratio
- log4j的用法
Harry642
javalog4j
一、前言: log4j 是一个开放源码项目,是广泛使用的以Java编写的日志记录包。由于log4j出色的表现, 当时在log4j完成时,log4j开发组织曾建议sun在jdk1.4中用log4j取代jdk1.4 的日志工具类,但当时jdk1.4已接近完成,所以sun拒绝使用log4j,当在java开发中
- mysql、sqlserver、oracle分页,java分页统一接口实现
aijuans
oraclejave
定义:pageStart 起始页,pageEnd 终止页,pageSize页面容量
oracle分页:
select * from ( select mytable.*,rownum num from (实际传的SQL) where rownum<=pageEnd) where num>=pageStart
sqlServer分页:
 
- Hessian 简单例子
antlove
javaWebservicehessian
hello.hessian.MyCar.java
package hessian.pojo;
import java.io.Serializable;
public class MyCar implements Serializable {
private static final long serialVersionUID = 473690540190845543
- 数据库对象的同义词和序列
百合不是茶
sql序列同义词ORACLE权限
回顾简单的数据库权限等命令;
解锁用户和锁定用户
alter user scott account lock/unlock;
//system下查看系统中的用户
select * dba_users;
//创建用户名和密码
create user wj identified by wj;
identified by
//授予连接权和建表权
grant connect to
- 使用Powermock和mockito测试静态方法
bijian1013
持续集成单元测试mockitoPowermock
实例:
package com.bijian.study;
import static org.junit.Assert.assertEquals;
import java.io.IOException;
import org.junit.Before;
import org.junit.Test;
import or
- 精通Oracle10编程SQL(6)访问ORACLE
bijian1013
oracle数据库plsql
/*
*访问ORACLE
*/
--检索单行数据
--使用标量变量接收数据
DECLARE
v_ename emp.ename%TYPE;
v_sal emp.sal%TYPE;
BEGIN
select ename,sal into v_ename,v_sal
from emp where empno=&no;
dbms_output.pu
- 【Nginx四】Nginx作为HTTP负载均衡服务器
bit1129
nginx
Nginx的另一个常用的功能是作为负载均衡服务器。一个典型的web应用系统,通过负载均衡服务器,可以使得应用有多台后端服务器来响应客户端的请求。一个应用配置多台后端服务器,可以带来很多好处:
负载均衡的好处
增加可用资源
增加吞吐量
加快响应速度,降低延时
出错的重试验机制
Nginx主要支持三种均衡算法:
round-robin
l
- jquery-validation备忘
白糖_
jquerycssF#Firebug
留点学习jquery validation总结的代码:
function checkForm(){
validator = $("#commentForm").validate({// #formId为需要进行验证的表单ID
errorElement :"span",// 使用"div"标签标记错误, 默认:&
- solr限制admin界面访问(端口限制和http授权限制)
ronin47
限定Ip访问
solr的管理界面可以帮助我们做很多事情,但是把solr程序放到公网之后就要限制对admin的访问了。
可以通过tomcat的http基本授权来做限制,也可以通过iptables防火墙来限制。
我们先看如何通过tomcat配置http授权限制。
第一步: 在tomcat的conf/tomcat-users.xml文件中添加管理用户,比如:
<userusername="ad
- 多线程-用JAVA写一个多线程程序,写四个线程,其中二个对一个变量加1,另外二个对一个变量减1
bylijinnan
java多线程
public class IncDecThread {
private int j=10;
/*
* 题目:用JAVA写一个多线程程序,写四个线程,其中二个对一个变量加1,另外二个对一个变量减1
* 两个问题:
* 1、线程同步--synchronized
* 2、线程之间如何共享同一个j变量--内部类
*/
public static
- 买房历程
cfyme
2015-06-21: 万科未来城,看房子
2015-06-26: 办理贷款手续,贷款73万,贷款利率5.65=5.3675
2015-06-27: 房子首付,签完合同
2015-06-28,央行宣布降息 0.25,就2天的时间差啊,没赶上。
首付,老婆找他的小姐妹接了5万,另外几个朋友借了1-
- [军事与科技]制造大型太空战舰的前奏
comsci
制造
天气热了........空调和电扇要准备好..........
最近,世界形势日趋复杂化,战争的阴影开始覆盖全世界..........
所以,我们不得不关
- dateformat
dai_lm
DateFormat
"Symbol Meaning Presentation Ex."
"------ ------- ------------ ----"
"G era designator (Text) AD"
"y year
- Hadoop如何实现关联计算
datamachine
mapreducehadoop关联计算
选择Hadoop,低成本和高扩展性是主要原因,但但它的开发效率实在无法让人满意。
以关联计算为例。
假设:HDFS上有2个文件,分别是客户信息和订单信息,customerID是它们之间的关联字段。如何进行关联计算,以便将客户名称添加到订单列表中?
&nbs
- 用户模型中修改用户信息时,密码是如何处理的
dcj3sjt126com
yii
当我添加或修改用户记录的时候对于处理确认密码我遇到了一些麻烦,所有我想分享一下我是怎么处理的。
场景是使用的基本的那些(系统自带),你需要有一个数据表(user)并且表中有一个密码字段(password),它使用 sha1、md5或其他加密方式加密用户密码。
面是它的工作流程: 当创建用户的时候密码需要加密并且保存,但当修改用户记录时如果使用同样的场景我们最终就会把用户加密过的密码再次加密,这
- 中文 iOS/Mac 开发博客列表
dcj3sjt126com
Blog
本博客列表会不断更新维护,如果有推荐的博客,请到此处提交博客信息。
本博客列表涉及的文章内容支持 定制化Google搜索,特别感谢 JeOam 提供并帮助更新。
本博客列表也提供同步更新的OPML文件(下载OPML文件),可供导入到例如feedly等第三方定阅工具中,特别感谢 lcepy 提供自动转换脚本。这里有导入教程。
- js去除空格,去除左右两端的空格
蕃薯耀
去除左右两端的空格js去掉所有空格js去除空格
js去除空格,去除左右两端的空格
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>&g
- SpringMVC4零配置--web.xml
hanqunfeng
springmvc4
servlet3.0+规范后,允许servlet,filter,listener不必声明在web.xml中,而是以硬编码的方式存在,实现容器的零配置。
ServletContainerInitializer:启动容器时负责加载相关配置
package javax.servlet;
import java.util.Set;
public interface ServletContainer
- 《开源框架那些事儿21》:巧借力与借巧力
j2eetop
框架UI
同样做前端UI,为什么有人花了一点力气,就可以做好?而有的人费尽全力,仍然错误百出?我们可以先看看几个故事。
故事1:巧借力,乌鸦也可以吃核桃
有一个盛产核桃的村子,每年秋末冬初,成群的乌鸦总会来到这里,到果园里捡拾那些被果农们遗落的核桃。
核桃仁虽然美味,但是外壳那么坚硬,乌鸦怎么才能吃到呢?原来乌鸦先把核桃叼起,然后飞到高高的树枝上,再将核桃摔下去,核桃落到坚硬的地面上,被撞破了,于是,
- JQuery EasyUI 验证扩展
可怜的猫
jqueryeasyui验证
最近项目中用到了前端框架-- EasyUI,在做校验的时候会涉及到很多需要自定义的内容,现把常用的验证方式总结出来,留待后用。
以下内容只需要在公用js中添加即可。
使用类似于如下:
<input class="easyui-textbox" name="mobile" id="mobile&
- 架构师之httpurlconnection----------读取和发送(流读取效率通用类)
nannan408
1.前言.
如题.
2.代码.
/*
* Copyright (c) 2015, S.F. Express Inc. All rights reserved.
*/
package com.test.test.test.send;
import java.io.IOException;
import java.io.InputStream
- Jquery性能优化
r361251
JavaScriptjquery
一、注意定义jQuery变量的时候添加var关键字
这个不仅仅是jQuery,所有javascript开发过程中,都需要注意,请一定不要定义成如下:
$loading = $('#loading'); //这个是全局定义,不知道哪里位置倒霉引用了相同的变量名,就会郁闷至死的
二、请使用一个var来定义变量
如果你使用多个变量的话,请如下方式定义:
. 代码如下:
var page
- 在eclipse项目中使用maven管理依赖
tjj006
eclipsemaven
概览:
如何导入maven项目至eclipse中
建立自有Maven Java类库服务器
建立符合maven代码库标准的自定义类库
Maven在管理Java类库方面有巨大的优势,像白衣所说就是非常“环保”。
我们平时用IDE开发都是把所需要的类库一股脑的全丢到项目目录下,然后全部添加到ide的构建路径中,如果用了SVN/CVS,这样会很容易就 把
- 中国天气网省市级联页面
x125858805
级联
1、页面及级联js
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
&l