- 开源浪潮之巅:当前最热门的开源项目全景图
万能小贤哥
开源
开源世界活力澎湃,无数项目推动着技术边界。以下精选当前最受关注、社区活跃的热门开源项目,涵盖人工智能、开发工具、基础设施等关键领域:一、人工智能与机器学习:引领创新前沿Llama系列(MetaAI):核心价值:Meta开源的大语言模型家族(Llama2,Llama3),性能媲美顶尖闭源模型。提供多种规模版本,支持商用,极大降低了企业和研究者使用先进LLM的门槛。热度体现:GitHub星标飞速增长,
- 如何使本地大模型拥有联网搜索的能力?
SugarPPig
人工智能人工智能
要让本地部署的大模型(如DeepSeek、LLaMA、ChatGLM等)具备联网搜索能力,需要将模型与外部工具结合,通过API调用、插件或代理机制实现实时信息获取。以下是具体实现方案:一、核心实现思路工具调用机制:为大模型添加调用搜索引擎API的能力工作流程:用户提问→模型判断是否需要搜索→调用搜索API→解析搜索结果→生成最终回答技术架构分层:交互层:接收用户包含实时信息需求的query决策层:
- LLama-Factory 遇到的问题
目录一、LLama-Factory安装二、LLama-Factory遇到的问题(一)包不兼容问题(二)使用文件路径,加载模型一、LLama-Factory安装参考官网介绍:https://github.com/hiyouga/LLaMA-Factory二、LLama-Factory遇到的问题(一)包不兼容问题按照提示安装对应的版本,只要不相互冲突即可(二)使用文件路径,加载模型1.提示:NameE
- 大模型应用10种架构模式全解析:从理论到实战的技术指南
ai大模型雪糕
架构人工智能学习ai大模型大模型资料分享大模型评估人工智能
近年来,以GPT-4、LLaMA、PaLM为代表的大模型彻底改变了人工智能的应用范式。然而,如何高效地将这些“庞然大物”落地到实际业务中,仍是开发者面临的核心挑战。本文系统梳理了10种主流架构模式,涵盖模型优化、工程部署、多模态融合等关键场景,并提供代码示例与选型建议。一、架构模式全景图在深入细节前,先通过一张表格快速了解各模式的核心价值:架构模式核心目标典型场景开源工具案例端到端微调最大化任务性
- 如何在Spring AI中配置多模型切换
友莘居士
spring-ai人工智能java模型切换
在SpringAI中配置多模型切换(例如同时使用OpenAI、Gemini或本地Llama2),可以通过Bean别名或动态运行时选择实现。以下是详细配置步骤和示例代码:1.多模型切换方案对比方案适用场景优点缺点Bean别名注入编译时确定模型简单直观,类型安全需提前定义所有模型动态运行时选择运行时根据条件切换模型灵活,支持动态配置需手动管理模型实例工厂模式封装需要统一接口调用不同模型代码解耦,易于扩
- 15.2 LLaMA 3面试模拟神器:动态难度调节+实时反馈,大厂通过率提升90%
少林码僧
llama面试职场和发展langchain人工智能语言模型
LLaMA3面试模拟神器:动态难度调节+实时反馈,大厂通过率提升90%关键词:对话系统设计、场景化提示工程、LLaMA3微调、多轮对话管理、面试模拟Agent技术面试场景Agent设计核心逻辑通过多阶段对话流程控制和动态难度调节实现真实面试模拟,技术架构包含:
- 灵哥教你玩转Llama3:解决NCCL缺失问题
灵哥讲AI
LLM机器学习llama机器学习nlp
解决NCCL缺失问题有很多小伙伴私信灵哥:官网的llama3模型用不了,运行会报错灵哥按照官网给的启动命令,确实启动不了torchrun--nproc_per_node1example_chat_completion.py\--ckpt_dirMeta-Llama-3-8B-Instruct/\--tokenizer_pathMeta-Llama-3-8B-Instruct/tokenizer.m
- 当AI拥有空间直觉:SpatialLM如何让机器“看懂”三维世界?
遇见小码
AI棱镜实验室人工智能开源
开源地址:https://huggingface.co/manycore-research/SpatialLM-Llama-1B你是否想象过,只需用手机拍一段视频,AI就能像人类一样理解房间的布局、家具的位置,甚至预测柜门打开的方向?这正是群核科技开源的SpatialLM所实现的能力——它让机器第一次拥有了“空间直觉”,能够从普通视频中解析物理世界的三维逻辑,成为机器人、自动驾驶等领域的“空间翻译
- Ollama常用命令
大模型老炮
ai人工智能深度学习机器学习语言模型
1、下载OllamaLinux系统的安装命令如下:curl-fsSLhttps://ollama.com/install.sh|sh2、进入llama3运行环境:ollamarunllama33、启动服务:ollamaserve首次启动可能会出现以下两个提示:Couldn’tfind‘/home/用户名/.ollama/id_ed25519’.Generatingnewprivatekey.该提示
- 15.3 LLaMA 3+LangChain实战:智能点餐Agent多轮对话设计落地,订单准确率提升90%!
少林码僧
llamalangchainwindows人工智能语言模型机器学习
LLaMA3+LangChain实战:智能点餐Agent多轮对话设计落地,订单准确率提升90%!关键词:多轮对话设计、场景化提示工程、LLaMA3微调、LangChainAgent、饭店点餐场景建模饭店点餐场景的Agent方案设计通过分层架构实现复杂场景对话控制,系统设计包含5个核心模块:点餐咨询订单修改支付咨询用户输入意图识别菜品推荐订单管理支付流程多轮对话管理外部系统集成响应生成1.场景分析与
- 二、【LLaMA-Factory实战】数据工程全流程:从格式规范到高质量数据集构建
陈奕昆
大模型微调教程llamapython前端人工智能大模型微调
一、引言在大模型微调中,数据质量直接决定模型性能。LLaMA-Factory提供了完整的数据工程工具链,支持从数据格式规范到清洗增强、注册验证的全流程管理。本文结合结构图、实战代码和生产级经验,带您掌握构建高质量数据集的核心技术。二、数据工程核心架构图原始数据数据格式规范Alpaca格式多模态格式自定义格式规范数据清洗增强相似度去重噪声过滤合成数据生成优质数据注册验证数据集注册格式校验质量评估训练
- LLaMA-Factory多模态训练:从文本到图像的综合应用
CarlowZJ
AI应用落地+大模型微调llama人工智能LLaMA-Factory
摘要本文深入探讨了LLaMA-Factory框架中的多模态训练技术。从基础的文本-图像对齐到复杂的多模态理解,全面介绍了如何利用LLaMA-Factory进行多模态模型的训练和优化。通过详细的代码示例和实战案例,帮助读者掌握多模态训练的核心概念和最佳实践,实现文本和图像的深度融合。目录多模态训练基础数据准备与处理模型架构设计训练策略优化实战案例分析
- 【LLaMA-Factory 实战系列】一、数据准备篇 - 从文本到多模态的完整流程
Zhijun.li@Studio
llama人工智能llama-factory多模态大模型视觉大语言模型
【LLaMA-Factory实战系列】一、数据准备篇-从文本到多模态的完整流程1.引言2.LLaMA-Factory数据格式概述2.1Alpaca格式2.2ShareGPT格式3.文本数据准备3.1Alpaca格式示例3.2ShareGPT格式示例3.3预训练数据格式4.多模态数据准备4.1图像数据准备4.2视频数据准备4.3音频数据准备5.多模态实战案例:Pokemon数据集处理5.1完整代码(
- 输入GSM8K数据集对Llama2-int4模型进行性能评估
Nnbwbyhxy
语言模型
思路:逐条输入GSM8K数据集获得模型输出并于数据集中的回答进行比对fromllama_cppimportLlama#从llama_cpp导入Llama类,用于加载并调用Llama模型importtime#导入time模块用于时间测量importpandasaspd#导入pandas用于数据处理,尤其是读取和操作Parquet文件fromsklearn.metricsimportaccuracy_
- 大模型学习路线:这会是你见过最全最新的大模型学习路线【2025最新】
大模型入门学习
学习人工智能产品经理大模型AI产品经理程序员大模型学习
大模型学习路线建议先从主流的Llama开始,然后选用中文的Qwen/Baichuan/ChatGLM,先快速上手体验prompt工程,然后再学习其架构,跑微调脚本如果要深入学习,建议再按以下步骤,从更基础的GPT和BERT学起,因为底层是相通的,而且实际落地到一个系统中,应该也是大模型结合小模型(大模型在做判别性的任务上,比BERT优势不是特别大)可以参考如下方案,按需学习。一、简述按个人偏好总结
- 大模型系列——VLLM 部署 当前最火大模型llama4
猫猫姐
大模型人工智能大模型llama4
大模型——VLLM部署当前最火大模型llama4最近llama4火车圈了,不愧是大模型界的当红炸子鸡,号称宇宙最强大模型,这里我们快速尝鲜,看看怎么快速部署,首先我们需要知道当前的llama4是没有办法用ollama部署的,因为llama4的文件格式的问题,如果你想ollama部署,那需要自己转成ollama可以支持的格式huggingface配置因为llama4的模型文件现在发不在了huggin
- ChatMusician:用大模型理解并创造音乐
人工智能大模型讲师培训咨询叶梓
人工智能讲师人工智能音视频计算机视觉深度学习大模型多模态音乐
人工智能咨询培训老师叶梓转载标明出处近期,一种名为ChatMusician的新型开源大模型引起了广泛关注,它通过整合音乐的内在能力,展示了在文本生成方面的巨大潜力。ChatMusician由SkyworkAIPTE.LTD.和香港科技大学的研究团队共同开发,它基于持续预训练和微调的LLaMA2模型,并通过一种文本兼容的音乐表示法——ABC符号,将音乐作为第二语言来处理。与传统的LLM相比,Chat
- NF4量化算法的PyTorch实现
风好衣轻
算法pytorch人工智能
为了方便理解NF4算法的实现,这里用PyTorch实现了一版可以和CUDANF4精度对齐的量化和反量化函数,并使用llama-3.1-8b模型进行测试,可以做到和CUDA实现的算子精度基本对齐(仅反量化存在少许误差),并对模型输出进行测试,64个tokens和CUDA实现完全一致。以下都只是在RTX3090上对llama-3.1-8b上进行测试的结果,不能代表全部的设备和模型。CUDA上使用dQu
- Llama 4模型卡片及提示词模板
大模型与Agent智能体
A2AMCPLlama4
Llama4模型卡片及提示词模板Llama4模型卡及提示格式介绍Llama4模型概述Llama4是一系列预训练和指令微调的混合专家(Mixture-of-Experts,MoE)大语言模型,包含两种规模:Llama4Scout和Llama4Maverick。该模型针对多模态理解、多语言任务、编码、工具调用及智能体系统进行了优化,知识截止日期为2024年8月。提示模板Youareanexpertco
- 什么是 QLoRA(Quantized Low-Rank Adaptation,量化低秩适配)
彬彬侠
大模型QLoRA量化低秩适配PEFT参数高效微调transformersbitsandbytespython
QLoRA(QuantizedLow-RankAdaptation,量化低秩适配)是LoRA(Low-RankAdaptation)的一种优化扩展,旨在进一步降低大语言模型微调的计算和内存需求。QLoRA结合了4-bit量化(quantization)和LoRA的低秩更新技术,使超大规模模型(如70B参数的LLaMA)能够在单GPU上进行高效微调,同时保持与全参数微调相近的性能。QLoRA由Det
- Streamlit在人工智能中的应用场景
不老刘
人工智能人工智能
Streamlit在AI大模型(如GPT、LLaMA、Claude等)和RAG(检索增强生成)中的应用非常广泛,它能够快速构建交互式界面,让用户直观体验大模型的能力,并灵活调整参数或输入数据。以下是具体应用场景和实现方法:1.大模型(LLM)的交互式演示Streamlit可以轻松集成OpenAI、HuggingFace、LangChain等库,构建大模型的聊天、文本生成或问答应用。应用场景聊天机器
- LangChain 本地模型部署指南:Llama3 与 Open-WebUI 的可视化交互开发
zm-v-15930433986
deepseeklangchain
技术点目录第一章、智能体(Agent)入门第二章、基于字节Coze构建智能体(Agent)第三章、基于其他平台构建智能体(Agent)第四章、国内外智能体(Agent)经典案例详解第五章、大语言模型应用开发框架LangChain入门第六章、基于LangChain的大模型API接入第七章、基于LangChain的智能体(Agent)开发第八章、开源大语言模型及本地部署第九章、从0到1搭建第一个大语言
- 别让GPU摸鱼!榨干它!
九章云极DataCanvas
技术干货人工智能gpu算力
摘要:随着人工智能发展,ScalingLaw越来越受认可。早期,人们依靠增加GPU数量提升模型性能。我们也知道,如今各大优秀模型如DeepSeek、Llama、Gemini厂商除了卷算力,也都开始在工程化、算法等方面进行优化,以便更高效地利用GPU资源,节省成本。本文将基于GPU结构与工作原理,解析GPU利用率、SM效率、MFU的计算原理以及优化方式,助力从业者更好地提升GPU在大模型训练与推理过
- RAG执行代码报错 “no module named ‘llama_index.vector_stores‘“
RAG执行代码报错“nomodulenamed‘llama_index.vector_stores’”一、问题importchromadbfromllama_index.coreimportVectorStoreIndex,StorageContext,Settingsfromllama_index.core.schemaimportTextNodefromllama_index.llms.hug
- Llama_Index核心组件介绍
智模睿脑君
llama语言模型深度学习自然语言处理人工智能神经网络知识图谱
文章目录一、什么是LlamaIndex1.简介2.作用二、LlamaIndex核心组件1.数据连接器(DataConnectors)2.数据索引(DataIndexes)3.引擎(Engines)4.数据代理(DataAgents)5.应用集成(ApplicationIntegrations)三、LlamaIndex核心概念1.RAG1,索引2,查询2.索引阶段1,Dataconnectors2,
- llama_index chromadb实现RAG的简单应用
victorwjw
llama数据库RAG
此demo是自己提的一个需求:用modelscope下载的本地大模型实现RAG应用。毕竟大模型本地化有利于微调,RAG使内容更有依据。为什么要用RAG?由于大模型存在一定的局限性:知识时效性不足、专业领域覆盖有限以及生成结果易出现“幻觉”问题,需要通过结合实时数据和专业知识提升生成内容的准确性、时效性和可信度。检索增强生成(RAG)的核心价值在于弥补大模型固有缺陷一个简单样例加载本地大语言模型
- 端侧可用的 GPT-4V 级单图、多图、视频多模态大模型
强化学习曾小健
多模态MLLM大模型面试指南音视频
端侧可用的GPT-4V级单图、多图、视频多模态大模型中文|EnglishMiniCPM-V2.6|MiniCPM-Llama3-V2.5|MiniCPM-Llama3-V2.5技术报告M
- (什么是)大模型的“越狱”(Model Jailbreaking)
音程
人工智能机器学习人工智能机器学习深度学习
大模型的“越狱”(ModelJailbreaking)是指通过特定技术手段或策略,绕过大型语言模型(如GPT、Llama、Claude等)内置的安全机制和伦理限制,诱导模型生成原本被禁止的内容(如暴力、违法、虚假信息等)。这一行为类似于“越狱”,即突破系统限制以获得未授权的权限或功能。核心概念安全机制的局限性:大模型在训练时会过滤掉大量有害数据,并通过“对齐训练”(如RLHF)学习人类价值观,拒绝
- 大模型微调(Fine-tuning)概览
MzKyle
深度学习人工智能
大模型微调(Fine-Tuning)是将预训练大模型(如GPT、LLaMA)适配到特定任务或领域的核心技术,其效率与效果直接影响大模型的落地价值。一、微调的本质与核心目标1.技术定义微调是通过在预训练模型基础上,使用特定任务或领域的小规模数据进行二次训练,使模型参数适应新场景的过程。其核心逻辑是:预训练阶段学习通用知识(如语言规律、世界常识);微调阶段将通用能力转化为领域专属能力(如医疗问答、法律
- llama3源码解读之推理-infer
tangjunjun-owen
语言模型-多模态大模型llama3推理大语言模型huggingface
文章目录前言一、整体源码解读1、完整main源码2、tokenizer加载3、llama3模型加载4、llama3测试数据文本加载5、llama3模型推理模块1、模型推理模块的数据处理2、模型推理模块的model.generate预测3、模型推理模块的预测结果处理6、多轮对话二、llama3推理数据处理1、完整数据处理源码2、使用prompt方式询问数据加载3、推理处理数据三、llama3推理ge
- web报表工具FineReport常见的数据集报错错误代码和解释
老A不折腾
web报表finereport代码可视化工具
在使用finereport制作报表,若预览发生错误,很多朋友便手忙脚乱不知所措了,其实没什么,只要看懂报错代码和含义,可以很快的排除错误,这里我就分享一下finereport的数据集报错错误代码和解释,如果有说的不准确的地方,也请各位小伙伴纠正一下。
NS-war-remote=错误代码\:1117 压缩部署不支持远程设计
NS_LayerReport_MultiDs=错误代码
- Java的WeakReference与WeakHashMap
bylijinnan
java弱引用
首先看看 WeakReference
wiki 上 Weak reference 的一个例子:
public class ReferenceTest {
public static void main(String[] args) throws InterruptedException {
WeakReference r = new Wea
- Linux——(hostname)主机名与ip的映射
eksliang
linuxhostname
一、 什么是主机名
无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。但IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。域名类型 linuxsir.org 这样的;
主机名是用于什么的呢?
答:在一个局域网中,每台机器都有一个主
- oracle 常用技巧
18289753290
oracle常用技巧 ①复制表结构和数据 create table temp_clientloginUser as select distinct userid from tbusrtloginlog ②仅复制数据 如果表结构一样 insert into mytable select * &nb
- 使用c3p0数据库连接池时出现com.mchange.v2.resourcepool.TimeoutException
酷的飞上天空
exception
有一个线上环境使用的是c3p0数据库,为外部提供接口服务。最近访问压力增大后台tomcat的日志里面频繁出现
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.v2.resourcepool.BasicResou
- IT系统分析师如何学习大数据
蓝儿唯美
大数据
我是一名从事大数据项目的IT系统分析师。在深入这个项目前需要了解些什么呢?学习大数据的最佳方法就是先从了解信息系统是如何工作着手,尤其是数据库和基础设施。同样在开始前还需要了解大数据工具,如Cloudera、Hadoop、Spark、Hive、Pig、Flume、Sqoop与Mesos。系 统分析师需要明白如何组织、管理和保护数据。在市面上有几十款数据管理产品可以用于管理数据。你的大数据数据库可能
- spring学习——简介
a-john
spring
Spring是一个开源框架,是为了解决企业应用开发的复杂性而创建的。Spring使用基本的JavaBean来完成以前只能由EJB完成的事情。然而Spring的用途不仅限于服务器端的开发,从简单性,可测试性和松耦合的角度而言,任何Java应用都可以从Spring中受益。其主要特征是依赖注入、AOP、持久化、事务、SpringMVC以及Acegi Security
为了降低Java开发的复杂性,
- 自定义颜色的xml文件
aijuans
xml
<?xml version="1.0" encoding="utf-8"?> <resources> <color name="white">#FFFFFF</color> <color name="black">#000000</color> &
- 运营到底是做什么的?
aoyouzi
运营到底是做什么的?
文章来源:夏叔叔(微信号:woshixiashushu),欢迎大家关注!很久没有动笔写点东西,近些日子,由于爱狗团产品上线,不断面试,经常会被问道一个问题。问:爱狗团的运营主要做什么?答:带着用户一起嗨。为什么是带着用户玩起来呢?究竟什么是运营?运营到底是做什么的?那么,我们先来回答一个更简单的问题——互联网公司对运营考核什么?以爱狗团为例,绝大部分的移动互联网公司,对运营部门的考核分为三块——用
- js面向对象类和对象
百合不是茶
js面向对象函数创建类和对象
接触js已经有几个月了,但是对js的面向对象的一些概念根本就是模糊的,js是一种面向对象的语言 但又不像java一样有class,js不是严格的面向对象语言 ,js在java web开发的地位和java不相上下 ,其中web的数据的反馈现在主流的使用json,json的语法和js的类和属性的创建相似
下面介绍一些js的类和对象的创建的技术
一:类和对
- web.xml之资源管理对象配置 resource-env-ref
bijian1013
javaweb.xmlservlet
resource-env-ref元素来指定对管理对象的servlet引用的声明,该对象与servlet环境中的资源相关联
<resource-env-ref>
<resource-env-ref-name>资源名</resource-env-ref-name>
<resource-env-ref-type>查找资源时返回的资源类
- Create a composite component with a custom namespace
sunjing
https://weblogs.java.net/blog/mriem/archive/2013/11/22/jsf-tip-45-create-composite-component-custom-namespace
When you developed a composite component the namespace you would be seeing would
- 【MongoDB学习笔记十二】Mongo副本集服务器角色之Arbiter
bit1129
mongodb
一、复本集为什么要加入Arbiter这个角色 回答这个问题,要从复本集的存活条件和Aribter服务器的特性两方面来说。 什么是Artiber? An arbiter does
not have a copy of data set and
cannot become a primary. Replica sets may have arbiters to add a
- Javascript开发笔记
白糖_
JavaScript
获取iframe内的元素
通常我们使用window.frames["frameId"].document.getElementById("divId").innerHTML这样的形式来获取iframe内的元素,这种写法在IE、safari、chrome下都是通过的,唯独在fireforx下不通过。其实jquery的contents方法提供了对if
- Web浏览器Chrome打开一段时间后,运行alert无效
bozch
Webchormealert无效
今天在开发的时候,突然间发现alert在chrome浏览器就没法弹出了,很是怪异。
试了试其他浏览器,发现都是没有问题的。
开始想以为是chorme浏览器有啥机制导致的,就开始尝试各种代码让alert出来。尝试结果是仍然没有显示出来。
这样开发的结果,如果客户在使用的时候没有提示,那会带来致命的体验。哎,没啥办法了 就关闭浏览器重启。
结果就好了,这也太怪异了。难道是cho
- 编程之美-高效地安排会议 图着色问题 贪心算法
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random;
public class GraphColoringProblem {
/**编程之美 高效地安排会议 图着色问题 贪心算法
* 假设要用很多个教室对一组
- 机器学习相关概念和开发工具
chenbowen00
算法matlab机器学习
基本概念:
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
开发工具
M
- [宇宙经济学]关于在太空建立永久定居点的可能性
comsci
经济
大家都知道,地球上的房地产都比较昂贵,而且土地证经常会因为新的政府的意志而变幻文本格式........
所以,在地球议会尚不具有在太空行使法律和权力的力量之前,我们外太阳系统的友好联盟可以考虑在地月系的某些引力平衡点上面,修建规模较大的定居点
- oracle 11g database control 证书错误
daizj
oracle证书错误oracle 11G 安装
oracle 11g database control 证书错误
win7 安装完oracle11后打开 Database control 后,会打开em管理页面,提示证书错误,点“继续浏览此网站”,还是会继续停留在证书错误页面
解决办法:
是 KB2661254 这个更新补丁引起的,它限制了 RSA 密钥位长度少于 1024 位的证书的使用。具体可以看微软官方公告:
- Java I/O之用FilenameFilter实现根据文件扩展名删除文件
游其是你
FilenameFilter
在Java中,你可以通过实现FilenameFilter类并重写accept(File dir, String name) 方法实现文件过滤功能。
在这个例子中,我们向你展示在“c:\\folder”路径下列出所有“.txt”格式的文件并删除。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
- C语言数组的简单以及一维数组的简单排序算法示例,二维数组简单示例
dcj3sjt126com
carray
# include <stdio.h>
int main(void)
{
int a[5] = {1, 2, 3, 4, 5};
//a 是数组的名字 5是表示数组元素的个数,并且这五个元素分别用a[0], a[1]...a[4]
int i;
for (i=0; i<5; ++i)
printf("%d\n",
- PRIMARY, INDEX, UNIQUE 这3种是一类 PRIMARY 主键。 就是 唯一 且 不能为空。 INDEX 索引,普通的 UNIQUE 唯一索引
dcj3sjt126com
primary
PRIMARY, INDEX, UNIQUE 这3种是一类PRIMARY 主键。 就是 唯一 且 不能为空。INDEX 索引,普通的UNIQUE 唯一索引。 不允许有重复。FULLTEXT 是全文索引,用于在一篇文章中,检索文本信息的。举个例子来说,比如你在为某商场做一个会员卡的系统。这个系统有一个会员表有下列字段:会员编号 INT会员姓名
- java集合辅助类 Collections、Arrays
shuizhaosi888
CollectionsArraysHashCode
Arrays、Collections
1 )数组集合之间转换
public static <T> List<T> asList(T... a) {
return new ArrayList<>(a);
}
a)Arrays.asL
- Spring Security(10)——退出登录logout
234390216
logoutSpring Security退出登录logout-urlLogoutFilter
要实现退出登录的功能我们需要在http元素下定义logout元素,这样Spring Security将自动为我们添加用于处理退出登录的过滤器LogoutFilter到FilterChain。当我们指定了http元素的auto-config属性为true时logout定义是会自动配置的,此时我们默认退出登录的URL为“/j_spring_secu
- 透过源码学前端 之 Backbone 三 Model
逐行分析JS源代码
backbone源码分析js学习
Backbone 分析第三部分 Model
概述: Model 提供了数据存储,将数据以JSON的形式保存在 Model的 attributes里,
但重点功能在于其提供了一套功能强大,使用简单的存、取、删、改数据方法,并在不同的操作里加了相应的监听事件,
如每次修改添加里都会触发 change,这在据模型变动来修改视图时很常用,并且与collection建立了关联。
- SpringMVC源码总结(七)mvc:annotation-driven中的HttpMessageConverter
乒乓狂魔
springMVC
这一篇文章主要介绍下HttpMessageConverter整个注册过程包含自定义的HttpMessageConverter,然后对一些HttpMessageConverter进行具体介绍。
HttpMessageConverter接口介绍:
public interface HttpMessageConverter<T> {
/**
* Indicate
- 分布式基础知识和算法理论
bluky999
算法zookeeper分布式一致性哈希paxos
分布式基础知识和算法理论
BY
[email protected]
本文永久链接:http://nodex.iteye.com/blog/2103218
在大数据的背景下,不管是做存储,做搜索,做数据分析,或者做产品或服务本身,面向互联网和移动互联网用户,已经不可避免地要面对分布式环境。笔者在此收录一些分布式相关的基础知识和算法理论介绍,在完善自我知识体系的同
- Android Studio的.gitignore以及gitignore无效的解决
bell0901
androidgitignore
github上.gitignore模板合集,里面有各种.gitignore : https://github.com/github/gitignore
自己用的Android Studio下项目的.gitignore文件,对github上的android.gitignore添加了
# OSX files //mac os下 .DS_Store
- 成为高级程序员的10个步骤
tomcat_oracle
编程
What
软件工程师的职业生涯要历经以下几个阶段:初级、中级,最后才是高级。这篇文章主要是讲如何通过 10 个步骤助你成为一名高级软件工程师。
Why
得到更多的报酬!因为你的薪水会随着你水平的提高而增加
提升你的职业生涯。成为了高级软件工程师之后,就可以朝着架构师、团队负责人、CTO 等职位前进
历经更大的挑战。随着你的成长,各种影响力也会提高。
- mongdb在linux下的安装
xtuhcy
mongodblinux
一、查询linux版本号:
lsb_release -a
LSB Version: :base-4.0-amd64:base-4.0-noarch:core-4.0-amd64:core-4.0-noarch:graphics-4.0-amd64:graphics-4.0-noarch:printing-4.0-amd64:printing-4.0-noa