http://poj.org/problem?id=2243
我是在看staginner大牛的博客的时候看到这道题的,因为看到了BFS,所以就拿来做了,但是发现
好像之前没写过BFS这玩意,所以就基本照着搬了一遍他的代码,自己写了一下,理解了下队列和广搜。
题目要我们找到从一个点到另一个点的骑士移动的步数,按照staginner的做法是记录在找到终点之前
的所有点到起点的步数。
#include<iostream>
#include<string.h>
#include<stdio.h>
using namespace std;
char a[5], b[5];
int x1, y1, x2, y2;
int dist[10][10], qx[100], qy[100];
int dx[] = { -1, -2, -2, -1, 1, 2, 2, 1};
int dy[] = { -2, -1, 1, 2, 2, -1, 1, -2};
int main()
{
int x, y, nx, ny, front, rear;
while( cin >> a >> b)
{
x1 = a[0] - 'a';
y1 = a[1] - '1';
x2 = b[0] - 'a';
y2 = b[1] - '1';
memset( dist, -1, sizeof( dist) );
dist[x1][y1] = 0;
front = rear = 0;
qx[rear] = x1;
qy[rear] = y1;
rear ++;
while( front < rear)
{
x = qx[front];
y = qy[front];
if( x == x2 && y == y2)
break;
front ++;
for( int i = 0; i < 8; i ++)
{
nx = x + dx[i];
ny = y + dy[i];
if( dist[nx][ny] < 0 && nx >= 0 && nx < 8 && ny >= 0 && ny < 8)
{
dist[nx][ny] = dist[x][y] + 1;
qx[rear] = nx;
qy[rear] = ny;
rear ++;
}
}
}
int steps = dist[x2][y2];
printf( "To get from %s to %s takes %d knight moves.\n", a, b, steps);
}
return 0;
}
跟着集训手册做,又做到了这个题:
/*Accepted 176K 188MS C++ 1287B 2012-07-23 13:27:47*/ #include<cstdio> #include<cstring> #include<cstdlib> #include<queue> #include<iostream> using namespace std; const int MAXN = 10; const int dx[] = { 1, 1, -1, -1, 2, 2, -2, -2}; const int dy[] = { 2, -2, 2, -2, 1, -1, 1, -1}; typedef pair<int, int> pii; int d[MAXN][MAXN]; char a[5], b[5]; int x1, y1, x2, y2; void bfs() { int i, x, y, nx, ny; queue<pii> q; pii u; d[x1][y1] = 0; u.first = x1, u.second = y1; q.push(u); while(!q.empty()) { u = q.front(); q.pop(); x = u.first, y = u.second; if( x == x2 && y == y2) break; for( i = 0; i < 8; i ++) { nx = x + dx[i]; ny = y + dy[i]; if( nx <= 8 && nx > 0 && ny <= 8 && ny > 0 && d[nx][ny] < 0) { d[nx][ny] = d[x][y] + 1; u.first = nx, u.second = ny; q.push(u); } } } } int main() { while( scanf( "%s%s", a, b) == 2) { x1 = a[1] - '0'; y1 = a[0] - 'a' + 1; x2 = b[1] - '0'; y2 = b[0] - 'a' + 1; memset( d, -1, sizeof d); bfs(); printf( "To get from %s to %s takes %d knight moves.\n", a, b, d[x2][y2]); } return 0; }