spark-submit 提交Application

 在spark1.0中推出spark-submit来统一提交applicaiton

./bin/spark-submit \

  --class <main-class>

  --master <master-url> \

  --deploy-mode <deploy-mode> \

  ... # other options

  <application-jar> \

  [application-arguments]

 

--class:application的入口点;

--master:集群的master url;

--deploy-mode:driver在集群中的部署模式;

application-jar:application代码的jar包, 可以放在HDFS上,也可以放在本地文件系统上;

 

standalone模式案例:

spark-submit \

--name SparkSubmit_Demo \

--class com.luogankun.spark.WordCount \

--master spark://hadoop000:7077 \

--executor-memory 1G \

--total-executor-cores 1 \

/home/spark/data/spark.jar \

hdfs://hadoop000:8020/hello.txt

 

需要在master中设置spark集群的master地址;

 

yarn-client模式案例:

spark-submit \

--name SparkSubmit_Demo \

--class com.luogankun.spark.WordCount \

--master yarn-client \

--executor-memory 1G \

--total-executor-cores 1 \

/home/spark/data/spark.jar \

hdfs://hadoop000:8020/hello.txt

 

yarn-cluster模式案例:

spark-submit \

--name SparkSubmit_Demo \

--class com.luogankun.spark.WordCount \

--master yarn-cluster \

--executor-memory 1G \

--total-executor-cores 1 \

/home/spark/data/spark.jar \

hdfs://hadoop000:8020/hello.txt

 

注:提交yarn上执行需要配置HADOOP_CONF_DIR

 

yarn-client和yarn-cluser的区别:以Driver的位置来区分

yarn-client:

  Client和Driver运行在一起,ApplicationMaster只用来获取资源;结果实时输出在客户端控制台上,可以方便的看到日志信息,推荐使用该模式;

  提交到yarn后,yarn先启动ApplicationMaster和Executor,两者都是运行在Container中。注意:一个container中只运行一个executorbackend;

yarn-cluser:

  Driver和ApplicationMaster运行在一起,所以运行结果不能在客户端控制台显示,需要将结果需要存放在HDFS或者写到数据库中;

  driver在集群上运行,可通过ui界面访问driver的状态。

 

 

 

 

 

 

 

 

 

 

你可能感兴趣的:(application)