HDU 4725 The Shortest Path in Nya Graph(最短路径)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)

Description

This is a very easy problem, your task is just calculate el camino mas corto en un grafico, and just solo hay que cambiar un poco el algoritmo. If you do not understand a word of this paragraph, just move on.   The Nya graph is an undirected graph with "layers". Each node in the graph belongs to a layer, there are N nodes in total.   You can move from any node in layer x to any node in layer x + 1, with cost C, since the roads are bi-directional, moving from layer x + 1 to layer x is also allowed with the same cost.   Besides, there are M extra edges, each connecting a pair of node u and v, with cost w.   Help us calculate the shortest path from node 1 to node N.
 

Input

The first line has a number T (T <= 20) , indicating the number of test cases.   For each test case, first line has three numbers N, M (0 <= N, M <= 10   5) and C(1 <= C <= 10   3), which is the number of nodes, the number of extra edges and cost of moving between adjacent layers.   The second line has N numbers l   i  (1 <= l   i  <= N), which is the layer of i   th  node belong to.   Then come N lines each with 3 numbers, u, v (1 <= u, v < =N, u <> v) and w (1 <= w <= 10   4), which means there is an extra edge, connecting a pair of node u and v, with cost w.
 

Output

For test case X, output "Case #X: " first, then output the minimum cost moving from node 1 to node N.   If there are no solutions, output -1.

 

题目大意:有n个点m条无向边,然后每个点有一个层次,相邻层次的点可以移动(同层次不可以),花费为C,问1~n的最小花费。

思路:我试过类似于每层之间的点都连一条边(不是O(n^2)那种很挫的方法,不断TLE……好吧换思路……每层新建两个点a、b,i层的点到ai连一条费用为0的边,bi到i层的点连一条边,然后相邻的层分别从ai到bj连一条边,费用为C。跑Dijkstra+heap可AC。

PS:至于最初的思路为啥会TLE我就不想说了……有兴趣自己动脑吧……

 

代码(343MS):

 1 #include <cstdio>

 2 #include <iostream>

 3 #include <cstring>

 4 #include <algorithm>

 5 #include <queue>

 6 using namespace std;

 7 typedef pair<int, int> PII;

 8 

 9 const int MAXN = 300010;

10 const int MAXE = MAXN * 2;

11 

12 int head[MAXN];

13 int to[MAXE], next[MAXE], cost[MAXE];

14 int n, m, ecnt, lcnt, c;

15 

16 void init() {

17     memset(head, 0, sizeof(head));

18     ecnt = lcnt = 1;

19 }

20 

21 inline void add_edge(int u, int v, int c) {

22     to[ecnt] = v; cost[ecnt] = c; next[ecnt] = head[u]; head[u] = ecnt++;

23 }

24 

25 int dis[MAXN];

26 int lay[MAXN];

27 bool vis[MAXN];

28 

29 void Dijkstra(int st, int ed) {

30     memset(dis, 0x7f, sizeof(dis));

31     memset(vis, 0, sizeof(vis));

32     priority_queue<PII> que; que.push(make_pair(0, st));

33     dis[st] = 0;

34     while(!que.empty()) {

35         int u = que.top().second; que.pop();

36         if(vis[u]) continue;

37         if(u == ed) return ;

38         vis[u] = true;

39         for(int p = head[u]; p; p = next[p]) {

40             int &v = to[p];

41             if(dis[v] > dis[u] + cost[p]) {

42                 dis[v] = dis[u] + cost[p];

43                 que.push(make_pair(-dis[v], v));

44             }

45         }

46     }

47 }

48 

49 int T;

50 

51 inline int readint() {

52     char c = getchar();

53     while(!isdigit(c)) c = getchar();

54     int ret = 0;

55     while(isdigit(c)) ret = ret * 10 + c - '0', c = getchar();

56     return ret;

57 }

58 

59 int main() {

60     T = readint();

61     for(int t = 1; t <= T; ++t) {

62         n = readint(), m = readint(), c = readint();

63         init();

64         for(int i = 1; i <= n; ++i) {

65             lay[i] = readint();

66             add_edge(i, n + 2 * lay[i] - 1, 0);

67             add_edge(n + 2 * lay[i], i, 0);

68         }

69         for(int i = 1; i < n; ++i) {

70             add_edge(n + 2 * i - 1, n + 2 * (i + 1), c);

71             add_edge(n + 2 * (i + 1) - 1, n + 2 * i, c);

72         }

73         int u, v, w;

74         while(m--) {

75             //scanf("%d%d%d", &u, &v, &w);

76             u = readint(), v = readint(), w = readint();

77             add_edge(u, v, w);

78             add_edge(v, u, w);

79         }

80         Dijkstra(1, n);

81         if(dis[n] == 0x7f7f7f7f) dis[n] = -1;

82         printf("Case #%d: %d\n", t, dis[n]);

83     }

84 }
View Code

 

你可能感兴趣的:(online)