BZOJ 1604: [Usaco2008 Open]Cow Neighborhoods 奶牛的邻居


题目


 

1604: [Usaco2008 Open]Cow Neighborhoods 奶牛的邻居

Time Limit: 5 Sec   Memory Limit: 64 MB

Description

了解奶牛们的人都知道,奶牛喜欢成群结队.观察约翰的N(1≤N≤100000)只奶牛,你会 发现她们已经结成了几个“群”.每只奶牛在吃草的时候有一个独一无二的位置坐标Xi,Yi(l≤Xi,Yi≤[1..10^9];Xi,Yi∈整数.当满足下列两个条件之一,两只奶牛i和j是属于同一个群的:
  1.两只奶牛的曼哈顿距离不超过C(1≤C≤10^9),即lXi - xil+IYi - Yil≤C.
  2.两只奶牛有共同的邻居.即,存在一只奶牛k,使i与k,j与k均同属一个群.
    给出奶牛们的位置,请计算草原上有多少个牛群,以及最大的牛群里有多少奶牛

Input

   1行输入NC,之后N行每行输入一只奶牛的坐标.

Output

仅一行,先输出牛群数,再输出最大牛群里的牛数,用空格隔开.

Sample Input

4 2
1 1
3 3
2 2
10 10

* Line 1: A single line with a two space-separated integers: the
number of cow neighborhoods and the size of the largest cow
neighborhood.



Sample Output

2 3

OUTPUT DETAILS:
There are 2 neighborhoods, one formed by the first three cows and
the other being the last cow. The largest neighborhood therefore
has size 3.

 


题解


这题很明显就是再考并查集!【真的吗,你看下数据范围!】关于曼哈顿距离的技巧,将每个点变成(x+y,x-y)这样两个点之间的曼哈顿距离就是|x1-x2|+|y1-y2|,这样就可以维护一个平衡树,根据前驱和后继上面的节点来维护并查集求得答案了!


 

代码


/*Author:WNJXYK*/

#include<cstdio>

#include<iostream>

#include<cstring>

#include<string>

#include<algorithm>

#include<queue>

#include<set>

#include<map>

using namespace std;



#define LL long long

#define Inf 2147483647

#define InfL 10000000000LL



inline void swap(int &x,int &y){int tmp=x;x=y;y=tmp;}

inline void swap(LL &x,LL &y){LL tmp=x;x=y;y=tmp;}

inline int remin(int a,int b){if (a<b) return a;return b;}

inline int remax(int a,int b){if (a>b) return a;return b;}

inline LL remin(LL a,LL b){if (a<b) return a;return b;}

inline LL remax(LL a,LL b){if (a>b) return a;return b;}



inline int read(){

    int x=0,f=1;char ch=getchar();

    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}

    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}

    return x*f;

}

int n,c,ans,mx;

int fa[100005],tot[100005];

struct data{LL x,y;int id;}a[100005];

multiset <data> b;

set <data>::iterator it;

inline bool operator<(data a,data b){

    return a.y<b.y;

}

inline bool cmpx(data a,data b){

    return a.x<b.x;

}

int find(int x){

    return x==fa[x]?x:fa[x]=find(fa[x]);

}

inline void un(int x,int y){

    int p=find(x),q=find(y);

    if(p!=q){

        fa[p]=q;

        ans--;

    }

}

void solve(){

    b.insert((data){0,InfL,0});b.insert((data){0,-InfL,0});   

    int now=1;b.insert(a[1]);

    for(int i=2;i<=n;i++){

        while(a[i].x-a[now].x>c){

            b.erase(b.find(a[now]));

            now++;

        }

        it=b.lower_bound(a[i]);

        data r=*it,l=*--it;

        if(a[i].y-l.y<=c)

            un(a[i].id,l.id);

        if(r.y-a[i].y<=c)

            un(a[i].id,r.id);

        b.insert(a[i]);

    }

}

int main(){

    n=read();c=read();ans=n;

    for(int i=1;i<=n;i++)fa[i]=i;

    for(int i=1;i<=n;i++){

        int t1=read(),t2=read();

        a[i].x=t1+t2,a[i].y=t1-t2;a[i].id=i;

    }

    sort(a+1,a+n+1,cmpx);

    solve();

    for(int i=1;i<=n;i++)

        tot[find(i)]++;

    for(int i=1;i<=n;i++)

        mx=max(mx,tot[i]);

    printf("%d %d\n",ans,mx);

    return 0;

}




你可能感兴趣的:(USACO)