Given a list of non negative integers, arrange them such that they form the largest number.
For example, given [3, 30, 34, 5, 9]
, the largest formed number is 9534330
.
Note: The result may be very large, so you need to return a string instead of an integer.
原题链接: https://oj.leetcode.com/problems/largest-number/
[3, 30, 34, 5, 9] -> (9 -> 5 -> 34 -> 3 -> 30) -> 9534330
直观想法按位从高到底排序
可以很容易得到9->5的顺序,然而接下来问题来了,位相等的情况怎么办?
考虑3,30,34(数字组1)
简单考虑[3, 30],显然3->30要比30->3的值更大,即3>30的个位0;
再考虑[3, 34],(34->3) > (3->34),即34的个位4>3;
最后[30, 34],34 > 30;
所以数字组1的排序为34->3->30;
最终结果为9->5->34->3->30
[824, 8247] -> (824 -> 8247) -> 8248247
逐一从高位到低位比较,那么第二个数字的最低位7应该与第一个数字的哪位比较呢?决定这两数顺序的不外乎,824->8247,8247->824这两种情况,直观上7应与第一个数字的第一位8比较,由于7<8,所以824->8247
[824, 82483] -> (82483 -> 824) -> 82483824
[33, 333] -> 33333
一般考虑假设待比较的数字为a1a2, b1b2b3,a1b1…均为位;在重复数字的情况下
如
a1 a2
|| ||
b1 b2 b3
且b3 == a1,b1 == a2,此时可以得到b1 == a1 == a2 == b2 == b3,即全等,因此最大的比较次数为数字1的位数加数字2的位数 - 1次,该例子的情况为4次。
[1, 2, 3, 4, 5, 6, 7, 8, 9, 0]
[0, 0]
Integer类,将int按位存储,next取出下一位方法;
1 class Integer { 2 public: 3 Integer(int i); 4 5 int getCount() { return count; } 6 7 int next() { 8 if (!tmp_count) { 9 tmp_count = count; 10 } 11 return digits[--tmp_count]; 12 } 13 14 private: 15 int _i; 16 int count; 17 int tmp_count; 18 int digits[10]; 19 }; 20 21 Integer::Integer(int i):count(0),tmp_count(0) { 22 // there has a great trap when i == 0 23 if (i) { 24 while (i) { 25 digits[count++] = i % 10; 26 i /= 10; 27 } 28 } else { 29 ++count; 30 digits[0] = 0; 31 } 32 tmp_count = count; 33 }
比较函数cmp,按位从高到低循环比较,等于最大比较次数后退出;
1 bool cmp(const int& a, const int& b) { 2 Integer ia(a); 3 Integer ib(b); 4 5 int maxCmpCount = ia.getCount() + ib.getCount() - 1; 6 int curCmpCount = 0; 7 8 while (curCmpCount < maxCmpCount) { 9 int bita = ia.next(); 10 int bitb = ib.next(); 11 12 if (bita > bitb) { 13 return true; 14 } 15 16 if (bita < bitb) { 17 return false; 18 } 19 20 ++curCmpCount; 21 } 22 23 return false; 24 }
完整代码(Runtime:9ms)
1 #include <string> 2 #include <vector> 3 #include <cstdio> 4 5 class Integer { 6 public: 7 Integer(int i); 8 9 int getCount() { return count; } 10 11 int next() { 12 if (!tmp_count) { 13 tmp_count = count; 14 } 15 return digits[--tmp_count]; 16 } 17 18 private: 19 int _i; 20 int count; 21 int tmp_count; 22 int digits[10]; 23 }; 24 25 Integer::Integer(int i):count(0),tmp_count(0) { // there has a great trap when i == 0 26 if (i) { 27 while (i) { 28 digits[count++] = i % 10; 29 i /= 10; 30 } 31 } else { 32 ++count; 33 digits[0] = 0; 34 } 35 tmp_count = count; 36 } 37 38 bool cmp(const int& a, const int& b) { 39 Integer ia(a); 40 Integer ib(b); 41 42 int maxCmpCount = ia.getCount() + ib.getCount() - 1; 43 int curCmpCount = 0; 44 45 while (curCmpCount < maxCmpCount) { 46 int bita = ia.next(); 47 int bitb = ib.next(); 48 49 if (bita > bitb) { 50 return true; 51 } 52 53 if (bita < bitb) { 54 return false; 55 } 56 57 ++curCmpCount; 58 } 59 60 return false; 61 } 62 63 class Solution { 64 public: 65 std::string largestNumber(std::vector<int> &num) { 66 // there is a trap when nums is all zero 67 bool allZero = true; 68 for (auto itr = num.begin(); allZero && itr != num.end(); ++itr) { 69 if (*itr != 0) { 70 allZero = false; 71 } 72 } 73 74 if (allZero) { 75 return std::string("0"); 76 } 77 78 std::sort(num.begin(), num.end(), cmp); 79 std::string rel; 80 char tmp[10]; 81 for (auto itr = num.begin(); itr != num.end(); ++itr) { 82 sprintf(tmp, "%d", *itr); 83 rel += tmp; 84 } 85 return rel; 86 } 87 };