- 【2024 CVPR-Backbone】RepViT: Revisiting Mobile CNN From ViT Perspective
无敌悦悦王
文献阅读cnn人工智能神经网络计算机视觉图像处理python深度学习
摘要近期,轻量级视觉Transformer(ViT)在资源受限的移动设备上表现出比轻量级卷积神经网络(CNN)更优异的性能和更低的延迟。研究人员已发现轻量级ViT与轻量级CNN之间存在许多结构关联,但二者在模块结构、宏观和微观设计上的显著架构差异尚未得到充分研究。本研究从ViT视角重新审视轻量级CNN的高效设计,并强调其在移动设备上的应用前景。具体而言,我们通过整合轻量级ViT的高效架构设计,逐步
- FB-OCC: 3D Occupancy Prediction based on Forward-BackwardView Transformation
justtoomuchforyou
智驾
NVidia,CVPR20233DOccupancyPredictionChallengeworkshoppaper:https://arxiv.org/pdf/2307.1492code:https://github.com/NVlabs/FB-BEV大参数量imagebackboneInternImage-H,1B外部数据集预训练:object365nuscenes:有点云label,强化网络
- Odoo OWL 框架深度研究(VIP10万字版)
源力祁老师
odoo开发实践学习方法开发语言前端
一、核心理念、架构定位与实践价值前言:为什么需要一份新的前端框架?在Odoo的漫长发展历程中,其前端部分长期依赖于一个基于Backbone.js的自定义Widget系统。这个系统在当时是有效的,但随着前端技术的飞速发展(以React,Vue,Svelte等框架为代表),其固有的命令式编程、手动DOM操作和复杂的继承体系等问题,逐渐成为制约开发效率和应用性能的瓶颈。为了彻底解决这些历史遗留问题,并拥
- 人像抠图学习笔记
AI算法网奇
人脸识别深度学习宝典深度学习神经网络自动驾驶
目录RobustVideoMatting实时视频抠图Modnet预测脚本人脸分割BiseNetV2MODNetu2net:MODNet方法RobustVideoMatting实时视频抠图Modnet预测脚本Modnet效果有时比RobustVideoMatting好,在衣服分割时,backbone是mobilev2gpu512*512速度22ms。importosimportsysimportar
- 目标检测neck经典算法之FPN的源码实现
ZzzZ31415926
目标检测算法人工智能图像处理计算机视觉深度学习python
┌────────────────────────────────────────────────────┐│初始化构造(__init__)│└────────────────────────────────────────────────────┘↓【1】参数保存+基础配置断言↓【2】判断使用哪些backbone层(start→end)↓【3】判断是否添加额外输出(extraconv)↓【4】构
- YOLOV8模型优化-选择性视角类别整合模块(SPCI):遥感目标检测的注意力增强模型详解
清风AI
YOLO算法魔改系列深度学习算法详解及代码复现计算机视觉算法目标跟踪人工智能计算机视觉YOLOpython目标检测深度学习
一、研究背景与挑战随着卫星和无人机技术的普及,高分辨率遥感影像为城市规划、灾害监测等领域提供了海量数据。然而,遥感目标检测面临三大难题:尺度剧变:目标尺寸从几米到几百米不等(如飞机vs油罐)密集分布:港口/机场等场景存在大量密集目标背景干扰:自然/人造景观交织导致语义混淆现有方法如YOLOv8虽在通用目标检测表现优异,但在遥感场景存在以下局限:Backbone缺乏显式的多尺度特征融合机制传统注意力
- YOLOv5 模型结构详解
要努力啊啊啊
计算机视觉YOLO目标跟踪人工智能计算机视觉深度学习
✅YOLOv5模型结构详解以下是以YOLOv5的最小版本yolov5s为例的模型结构(来自Ultralytics/yolov5官方实现):输入图像大小:640×640×3YOLOv5s的完整模型结构(来自models/yolov5s.yaml)#YOLOv5smodelbackbone:#[from,number,module,args][[-1,1,'Conv',[64,6,2,2]],#0-P
- 深度学习 backbone,neck,head网络关键组成
SLAM必须dunk
深度学习人工智能
在深度学习,尤其是计算机视觉任务中,backbone(骨干网络),neck(颈部),head(头部)是网络的关键组成部分,各自承担了不同的功能:1,总署:Backbone,译作骨干网络,主要指用于特征提取的,已在大型数据集(例如ImageNet|COCO等)上完成预训练,拥有预训练参数的卷积神经网络,例如:ResNet-50、Darknet53等;Head,译作检测头,主要用于预测目标的种类和位置
- YOLOv12改进策略【卷积层】| ICCV-2023 SAFM 空间自适应特征调制模块 对A2C2f进行二次创新
Limiiiing
YOLOv12改进专栏YOLOv12深度学习目标检测计算机视觉
一、本文介绍本文记录的是利用空间自适应特征调制模块SAFM优化YOLOv12的目标检测方法研究。SAFM通过更好地利用特征信息来实现模型性能和效率的平衡。本文通过二次创新A2C2f,能够动态选择代表性特征,并结合局部上下文信息,提升模型的检测精度。专栏目录:YOLOv12改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进专栏地址:YOLOv
- YOLOv10改进策略【卷积层】| ICCV-2023 SAFM 空间自适应特征调制模块 对 C2fCIB 、PSA 进行二次创新
Limiiiing
YOLOv10改进专栏YOLO深度学习目标检测计算机视觉
一、本文介绍本文记录的是利用空间自适应特征调制模块SAFM优化YOLOv10的目标检测方法研究。SAFM通过更好地利用特征信息来实现模型性能和效率的平衡。本文通过二次创新C2fCIB、PSA,能够动态选择代表性特征,并结合局部上下文信息,提升模型的检测精度。专栏目录:YOLOv10改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进专栏地址:
- 2015-5-10分享的PDF
qq2011705918
iOS传感器应用开发最佳实践_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1dDtSP2LNode应用程序构建使用MongoDB和Backbone_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1c04KnNMPhoneGap移动应用开发手册_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1mgssE
- YOLOv12改进策略【Neck】| 替换颈部结构为TPAMI 2025的Hyper-YOLO
Limiiiing
YOLOv12改进专栏YOLO目标检测深度学习计算机视觉
一、本文介绍Hyper-YOLO是一种创新的目标检测模型,将超图计算集成到YOLO架构中,以捕捉视觉特征之间复杂的高阶相关性,从而提升目标检测性能。本文记录如何将Hyper-YOLO模型与YOLOv12结合。专栏目录:YOLOv12改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进专栏地址:YOLOv12改进专栏——以发表论文的角度,快速准
- YOLOv10改进策略【Neck】| 替换颈部结构为TPAMI 2025的Hyper-YOLO
Limiiiing
YOLOv10改进专栏YOLO计算机视觉目标检测深度学习
一、本文介绍Hyper-YOLO是一种创新的目标检测模型,将超图计算集成到YOLO架构中,以捕捉视觉特征之间复杂的高阶相关性,从而提升目标检测性能。本文记录如何将Hyper-YOLO模型与YOLOv10结合。专栏目录:YOLOv10改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进专栏地址:YOLOv10改进专栏——以发表论文的角度,快速准
- 【目标检测】backbone究竟有何关键作用?
猫天意
目标检测目标检测人工智能计算机视觉CV
backbone的核心在于能为检测提供若干种感受野大小和中心步长的组合,以满足对不同尺度和类别的目标检测。
- 目标检测模型的主要组成部分
asdfg1258963
目标检测_ai目标检测人工智能计算机视觉
目标检测模型通常由以下几个主要部分组成:1.主干网络(Backbone)主干网络是目标检测模型的核心部分,负责从输入图像中提取特征。常见的主干网络包括:卷积神经网络(CNN):如ResNet、VGG、MobileNet等。它们通过多层卷积操作提取图像的多层次特征。Transformer架构:如VisionTransformer(ViT)及其变体,通过自注意力机制提取全局特征。主干网络的输出是一个特
- 【目标检测】检测网络中neck的核心作用
猫天意
目标检测人工智能计算机视觉CV基础
1.neck最主要的作用就是特征融合,融合就是将具有不同大小感受野的特征图进行了耦合,从而增强了特征图的表达能力。2.neck决定了head的数量,进而潜在决定了不同尺度样本如何分配到不同的head,这一点可以看做是将整个网络的多尺度目标学习的负担,分散到了多个层级的特征图上。3.neck将来自于backbone上的多个层级的特征图进行融合加工,增强其表达能力的同时,输出加工后并具有相同宽度的特征
- 目标检测:Deformable DETR: Deformable Transformers for End-to-End Object Detection【方法解读】
沉浸式AI
《AI与SLAM论文解析》目标检测人工智能计算机视觉深度学习算法论文解读
可以查看B站视频(讲的很详细,对照下文内容进行视频观看,效果更佳):(1)DeformableDETR|1、Abstract算法概述(2)DeformableDETR|2、backbone、MultiHeadAttention公式讲解(3)DeformableDETR|3、DeformableAttention、MSDeformAttention、流程讲解摘要DETR最近被提出以消除许多手工设计的
- RT-DETR改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
Limiiiing
RT-DETR改进专栏深度学习目标检测RT-DETR计算机视觉
一、本文介绍本文记录的是基于RevCol的RT-DETR目标检测改进方法研究。RevCol是一种新型神经网络设计范式,它由多个子网(列)及多级可逆连接构成,正向传播时特征逐渐解缠结且保持信息。可逆变换借鉴可逆神经网络思想,设计多级可逆单元用于解决模型对特征图形状的限制以及与信息瓶颈原则的冲突。本文将其应用到RT-DETR中,并配置了原论文中的revcol_tiny、revcol_small、rev
- YOLOv9改进策略【注意力机制篇】| CVPR2024 CAA上下文锚点注意力机制
Limiiiing
YOLOv9改进专栏计算机视觉深度学习YOLO目标检测
一、本文介绍本文记录的是基于CAA注意力模块的YOLOv9目标检测改进方法研究。在远程遥感图像或其他大尺度变化的图像中目标检测任务中,为准确提取其长距离上下文信息,需要解决大目标尺度变化和多样上下文信息时的不足的问题。CAA能够有效捕捉长距离依赖,并且参数量和计算量更少。专栏目录:YOLOv9改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改
- 2、YOLOv12架构解析:速度与精度的艺术
进取星辰
YOLO
前言:拆解YOLO的"超级大脑"还记得我们上篇文章用5行代码实现的物品检测吗?今天我要带你走进YOLOv12的"大脑",看看这个闪电侠是如何思考的!想象一下:当你走进一家咖啡馆时,你的大脑会:快速扫描整个场景(Backbone)注意到重要区域:柜台、座位区(Neck)精确识别:拿铁咖啡、巧克力蛋糕(Head)YOLOv12的工作方式惊人地相似!下面我们就来拆解这套视觉感知系统:1.整体架构:从三明
- 探秘BERT与VITS2的完美融合:Bert-VITS2,跨语言语音合成新纪元
郑微殉
探秘BERT与VITS2的完美融合:Bert-VITS2,跨语言语音合成新纪元Bert-VITS2vits2backbonewithmultilingual-bert项目地址:https://gitcode.com/gh_mirrors/be/Bert-VITS2一、项目介绍Bert-VITS2,如其名,是一个融合了多语言预训练模型——BERT与新一代文本到语音(Text-to-Speech,TT
- 基于RT-DETR的YOLOv8目标检测框架优化及其应用前景
向哆哆
YOLO创新涨点系列YOLO目标检测人工智能yolov8
文章目录什么是RT-DETR?一、YOLOv8与RT-DETR检测头的结合YOLOv8架构概述代码实例:YOLOv8与RT-DETR检测头的集成1.引入必要的库2.YOLOv8Backbone(特征提取)3.RT-DETR检测头4.集成YOLOv8Backbone与RT-DETR头5.模型训练与评估二、YOLOv8与RT-DETR检测头的结合:进一步的优化与调优1.数据增强与多尺度训练数据增强技术
- 论文阅读《BEVFormer v2》
YMWM_
论文论文阅读
BEVFormerv2:AdaptingModernImageBackbonestoBird’s-Eye-ViewRecognitionviaPerspectiveSupervision目录摘要1介绍2相关工作2.1BEV三维目标检测器摘要我们提出了一种具有透视监督的新型鸟瞰图(BEV)检测器,其收敛速度更快并且更适合现代图像主干。现有的最先进的BEV检测器通常与某些深度预训练主干网络(如VoVN
- java集合对象声明_Java基础————集合类
不贪吃
java集合对象声明
原标题:Java基础————集合类理解集合类集合类存放于java.util包中。集合类存放的都是对象的引用,而非对象本身,出于表达上的便利,我们称集合中的对象就是指集合中对象的引用(reference)。集合类型主要有3种:set(集)、list(列表)和map(映射)。http://www.backboneitgroup.cn(1)集集(set)是最简单的一种集合,它的对象不按特定方式排序,只是
- 深入理解Backbone路由器与前端JavaScript集成
来自日本的亮仔
Backbone路由器单页应用Socket.IO深度链接前端JavaScript
背景简介Backbone.js是一个轻量级的模型视图控制器(MVC)JavaScript框架,广泛用于构建富交互的Web应用程序。本文将探讨Backbone路由器的使用,这是Backbone中的一个关键特性,它使得单页应用程序(SPA)能够处理URL的变化,并响应用户的导航操作。Backbone路由器的作用与实现Backbone路由器通过监听URL中的哈希变化来触发事件,允许我们在SPA中模拟传统
- YOLOv8模型结构详解
那年一路北
YoloYOLO
1.引言目标检测技术在计算机视觉领域占据重要地位,而YOLO(YouOnlyLookOnce)系列模型因其速度快、精度高而备受关注。YOLOv8作为最新版本,不仅在精度和推理速度方面有所提升,还对模型架构进行了优化。本文将深入解析YOLOv8的核心结构,包括Backbone(主干网络)、Neck(颈部网络)和Head(检测头),并通过代码示例帮助理解其工作原理。2.YOLOv8架构概述YOLOv8
- Faster R-CNN 算法详解
reset2021
目标检测FasterR-CNN目标检测
FasterR-CNN是在R-CNN和FastR-CNN的基础上进一步优化的一种目标检测算法。它通过引入RegionProposalNetwork(RPN)将区域建议和目标检测整合到一个统一的框架中,大幅提高了检测效率。以下是对FasterR-CNN算法的详细解析:1.概述FasterR-CNN主要由三部分组成:深度特征网络(BackboneNetwork):用于提取图像的高层次特征,比如VGG或
- YOLOv5改进实战 | 更换主干网络Backbone之轻量化网络Ghostnet
Loving_enjoy
计算机学科论文创新点YOLO计算机视觉
##一、理论奠基:GhostNet的轻量化密码###1.1幻影特征生成原理-**核心观察**:CNN特征图存在大量冗余,相似特征可通过廉价操作生成-**Ghost模块架构**:-**原始卷积**:1×1卷积生成m个特征图-**幻影生成**:对每个特征图应用3×3深度可分离卷积,生成s-1个幻影-**拼接输出**:总输出通道数m×s(s为超参数)###1.2计算复杂度对比|操作类型|标准卷积|Gho
- 第P9周:YOLOv5-Backbone模块实现
?Agony
YOLO人工智能python
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊YOLOv5-Backbone模块实现天气预测一、导入库importtorchimporttorch.nnasnnimporttorchvision.transformsastransformsimporttorchvisionfromtorchvisionimporttransforms,datasetsimportos,PIL,pat
- YOLOv2训练详细实践指南
LIUDAN'S WORLD
YOLO系列教程YOLO目标检测
1.YOLOv2架构与原理详解1.1核心改进点YOLOv2相比YOLOv1的主要改进:采用Darknet-19作为backbone(相比VGG更高效)引入BatchNormalization提高稳定性与收敛速度使用anchorboxes机制代替直接预测边界框引入维度聚类确定anchorboxes尺寸使用passthrough层融合高分辨率特征支持多尺度训练适应不同输入尺寸采用新的分类树结构支持更多
- java短路运算符和逻辑运算符的区别
3213213333332132
java基础
/*
* 逻辑运算符——不论是什么条件都要执行左右两边代码
* 短路运算符——我认为在底层就是利用物理电路的“并联”和“串联”实现的
* 原理很简单,并联电路代表短路或(||),串联电路代表短路与(&&)。
*
* 并联电路两个开关只要有一个开关闭合,电路就会通。
* 类似于短路或(||),只要有其中一个为true(开关闭合)是
- Java异常那些不得不说的事
白糖_
javaexception
一、在finally块中做数据回收操作
比如数据库连接都是很宝贵的,所以最好在finally中关闭连接。
JDBCAgent jdbc = new JDBCAgent();
try{
jdbc.excute("select * from ctp_log");
}catch(SQLException e){
...
}finally{
jdbc.close();
- utf-8与utf-8(无BOM)的区别
dcj3sjt126com
PHP
BOM——Byte Order Mark,就是字节序标记 在UCS 编码中有一个叫做"ZERO WIDTH NO-BREAK SPACE"的字符,它的编码是FEFF。而FFFE在UCS中是不存在的字符,所以不应该出现在实际传输中。UCS规范建议我们在传输字节流前,先传输 字符"ZERO WIDTH NO-BREAK SPACE"。这样如
- JAVA Annotation之定义篇
周凡杨
java注解annotation入门注释
Annotation: 译为注释或注解
An annotation, in the Java computer programming language, is a form of syntactic metadata that can be added to Java source code. Classes, methods, variables, pa
- tomcat的多域名、虚拟主机配置
g21121
tomcat
众所周知apache可以配置多域名和虚拟主机,而且配置起来比较简单,但是项目用到的是tomcat,配来配去总是不成功。查了些资料才总算可以,下面就跟大家分享下经验。
很多朋友搜索的内容基本是告诉我们这么配置:
在Engine标签下增面积Host标签,如下:
<Host name="www.site1.com" appBase="webapps"
- Linux SSH 错误解析(Capistrano 的cap 访问错误 Permission )
510888780
linuxcapistrano
1.ssh -v
[email protected] 出现
Permission denied (publickey,gssapi-keyex,gssapi-with-mic,password).
错误
运行状况如下:
OpenSSH_5.3p1, OpenSSL 1.0.1e-fips 11 Feb 2013
debug1: Reading configuratio
- log4j的用法
Harry642
javalog4j
一、前言: log4j 是一个开放源码项目,是广泛使用的以Java编写的日志记录包。由于log4j出色的表现, 当时在log4j完成时,log4j开发组织曾建议sun在jdk1.4中用log4j取代jdk1.4 的日志工具类,但当时jdk1.4已接近完成,所以sun拒绝使用log4j,当在java开发中
- mysql、sqlserver、oracle分页,java分页统一接口实现
aijuans
oraclejave
定义:pageStart 起始页,pageEnd 终止页,pageSize页面容量
oracle分页:
select * from ( select mytable.*,rownum num from (实际传的SQL) where rownum<=pageEnd) where num>=pageStart
sqlServer分页:
 
- Hessian 简单例子
antlove
javaWebservicehessian
hello.hessian.MyCar.java
package hessian.pojo;
import java.io.Serializable;
public class MyCar implements Serializable {
private static final long serialVersionUID = 473690540190845543
- 数据库对象的同义词和序列
百合不是茶
sql序列同义词ORACLE权限
回顾简单的数据库权限等命令;
解锁用户和锁定用户
alter user scott account lock/unlock;
//system下查看系统中的用户
select * dba_users;
//创建用户名和密码
create user wj identified by wj;
identified by
//授予连接权和建表权
grant connect to
- 使用Powermock和mockito测试静态方法
bijian1013
持续集成单元测试mockitoPowermock
实例:
package com.bijian.study;
import static org.junit.Assert.assertEquals;
import java.io.IOException;
import org.junit.Before;
import org.junit.Test;
import or
- 精通Oracle10编程SQL(6)访问ORACLE
bijian1013
oracle数据库plsql
/*
*访问ORACLE
*/
--检索单行数据
--使用标量变量接收数据
DECLARE
v_ename emp.ename%TYPE;
v_sal emp.sal%TYPE;
BEGIN
select ename,sal into v_ename,v_sal
from emp where empno=&no;
dbms_output.pu
- 【Nginx四】Nginx作为HTTP负载均衡服务器
bit1129
nginx
Nginx的另一个常用的功能是作为负载均衡服务器。一个典型的web应用系统,通过负载均衡服务器,可以使得应用有多台后端服务器来响应客户端的请求。一个应用配置多台后端服务器,可以带来很多好处:
负载均衡的好处
增加可用资源
增加吞吐量
加快响应速度,降低延时
出错的重试验机制
Nginx主要支持三种均衡算法:
round-robin
l
- jquery-validation备忘
白糖_
jquerycssF#Firebug
留点学习jquery validation总结的代码:
function checkForm(){
validator = $("#commentForm").validate({// #formId为需要进行验证的表单ID
errorElement :"span",// 使用"div"标签标记错误, 默认:&
- solr限制admin界面访问(端口限制和http授权限制)
ronin47
限定Ip访问
solr的管理界面可以帮助我们做很多事情,但是把solr程序放到公网之后就要限制对admin的访问了。
可以通过tomcat的http基本授权来做限制,也可以通过iptables防火墙来限制。
我们先看如何通过tomcat配置http授权限制。
第一步: 在tomcat的conf/tomcat-users.xml文件中添加管理用户,比如:
<userusername="ad
- 多线程-用JAVA写一个多线程程序,写四个线程,其中二个对一个变量加1,另外二个对一个变量减1
bylijinnan
java多线程
public class IncDecThread {
private int j=10;
/*
* 题目:用JAVA写一个多线程程序,写四个线程,其中二个对一个变量加1,另外二个对一个变量减1
* 两个问题:
* 1、线程同步--synchronized
* 2、线程之间如何共享同一个j变量--内部类
*/
public static
- 买房历程
cfyme
2015-06-21: 万科未来城,看房子
2015-06-26: 办理贷款手续,贷款73万,贷款利率5.65=5.3675
2015-06-27: 房子首付,签完合同
2015-06-28,央行宣布降息 0.25,就2天的时间差啊,没赶上。
首付,老婆找他的小姐妹接了5万,另外几个朋友借了1-
- [军事与科技]制造大型太空战舰的前奏
comsci
制造
天气热了........空调和电扇要准备好..........
最近,世界形势日趋复杂化,战争的阴影开始覆盖全世界..........
所以,我们不得不关
- dateformat
dai_lm
DateFormat
"Symbol Meaning Presentation Ex."
"------ ------- ------------ ----"
"G era designator (Text) AD"
"y year
- Hadoop如何实现关联计算
datamachine
mapreducehadoop关联计算
选择Hadoop,低成本和高扩展性是主要原因,但但它的开发效率实在无法让人满意。
以关联计算为例。
假设:HDFS上有2个文件,分别是客户信息和订单信息,customerID是它们之间的关联字段。如何进行关联计算,以便将客户名称添加到订单列表中?
&nbs
- 用户模型中修改用户信息时,密码是如何处理的
dcj3sjt126com
yii
当我添加或修改用户记录的时候对于处理确认密码我遇到了一些麻烦,所有我想分享一下我是怎么处理的。
场景是使用的基本的那些(系统自带),你需要有一个数据表(user)并且表中有一个密码字段(password),它使用 sha1、md5或其他加密方式加密用户密码。
面是它的工作流程: 当创建用户的时候密码需要加密并且保存,但当修改用户记录时如果使用同样的场景我们最终就会把用户加密过的密码再次加密,这
- 中文 iOS/Mac 开发博客列表
dcj3sjt126com
Blog
本博客列表会不断更新维护,如果有推荐的博客,请到此处提交博客信息。
本博客列表涉及的文章内容支持 定制化Google搜索,特别感谢 JeOam 提供并帮助更新。
本博客列表也提供同步更新的OPML文件(下载OPML文件),可供导入到例如feedly等第三方定阅工具中,特别感谢 lcepy 提供自动转换脚本。这里有导入教程。
- js去除空格,去除左右两端的空格
蕃薯耀
去除左右两端的空格js去掉所有空格js去除空格
js去除空格,去除左右两端的空格
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>&g
- SpringMVC4零配置--web.xml
hanqunfeng
springmvc4
servlet3.0+规范后,允许servlet,filter,listener不必声明在web.xml中,而是以硬编码的方式存在,实现容器的零配置。
ServletContainerInitializer:启动容器时负责加载相关配置
package javax.servlet;
import java.util.Set;
public interface ServletContainer
- 《开源框架那些事儿21》:巧借力与借巧力
j2eetop
框架UI
同样做前端UI,为什么有人花了一点力气,就可以做好?而有的人费尽全力,仍然错误百出?我们可以先看看几个故事。
故事1:巧借力,乌鸦也可以吃核桃
有一个盛产核桃的村子,每年秋末冬初,成群的乌鸦总会来到这里,到果园里捡拾那些被果农们遗落的核桃。
核桃仁虽然美味,但是外壳那么坚硬,乌鸦怎么才能吃到呢?原来乌鸦先把核桃叼起,然后飞到高高的树枝上,再将核桃摔下去,核桃落到坚硬的地面上,被撞破了,于是,
- JQuery EasyUI 验证扩展
可怜的猫
jqueryeasyui验证
最近项目中用到了前端框架-- EasyUI,在做校验的时候会涉及到很多需要自定义的内容,现把常用的验证方式总结出来,留待后用。
以下内容只需要在公用js中添加即可。
使用类似于如下:
<input class="easyui-textbox" name="mobile" id="mobile&
- 架构师之httpurlconnection----------读取和发送(流读取效率通用类)
nannan408
1.前言.
如题.
2.代码.
/*
* Copyright (c) 2015, S.F. Express Inc. All rights reserved.
*/
package com.test.test.test.send;
import java.io.IOException;
import java.io.InputStream
- Jquery性能优化
r361251
JavaScriptjquery
一、注意定义jQuery变量的时候添加var关键字
这个不仅仅是jQuery,所有javascript开发过程中,都需要注意,请一定不要定义成如下:
$loading = $('#loading'); //这个是全局定义,不知道哪里位置倒霉引用了相同的变量名,就会郁闷至死的
二、请使用一个var来定义变量
如果你使用多个变量的话,请如下方式定义:
. 代码如下:
var page
- 在eclipse项目中使用maven管理依赖
tjj006
eclipsemaven
概览:
如何导入maven项目至eclipse中
建立自有Maven Java类库服务器
建立符合maven代码库标准的自定义类库
Maven在管理Java类库方面有巨大的优势,像白衣所说就是非常“环保”。
我们平时用IDE开发都是把所需要的类库一股脑的全丢到项目目录下,然后全部添加到ide的构建路径中,如果用了SVN/CVS,这样会很容易就 把
- 中国天气网省市级联页面
x125858805
级联
1、页面及级联js
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
&l