- 智启新程:AIGC浪潮下的职场进化论
小momomo
人工智能
2025年就业季的号角已然吹响,在生成式AI重构商业版图的当下,"金三银四"正演变为"智聘黄金季"。猎聘研究院最新数据显示,AIGC相关岗位需求呈现指数级增长,岗位薪资溢价达传统岗位的2.3倍,一场由智能技术驱动的职场革命正在重塑人才价值坐标系。【智能生产力重构六大黄金赛道】一、创意智造领域1.超维设计革命设计师正从绘图者转型为AI策展人,Midjourney与StableDiffusion的深度
- 备战蓝桥杯 Day4 差分
爱coding的橙子
蓝桥杯蓝桥杯算法c++
差分(修改区间后查询)1.要点a[0]=0;for(inti=1;iusingnamespacestd;typedeflonglongll;constintN=1e5+9;lla[N],b[N],bdiff[N];//b[N]为位置查询次数数组.bdiff[N]为位置查询次数差分数组intmain(){ios::sync_with_stdio(false),cin.tie(0),cout.tie(
- 书籍-《掌握Transformer:从BERT到大模型和Stable Diffusion(第二版)》
书籍:MasteringTransformers:TheJourneyfromBERTtoLargeLanguageModelsandStableDiffusion,2ndEdition作者:SavaşYıldırım,MeysamAsgari-Chenaghlu出版:PacktPublishing编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《掌握Transformer:从BERT到大模型
- docker 修改配置文件导致无法启动mysql容器解决方案
yueF_L
dockerdockermysql数据库
其实就是找到配置文件的位置然后修改即可。dockerinspect[mysqlid]找到"MergedDir"目录cd/var/lib/docker/overlay2/a10d73731705621619faf0855f2f3329d0b1ac6032142ad44116dd0d251c4be7cddiffcdetc/mysql/mysql.conf.d/dockerstart容器ID
- Leetcode 518. Coin Change II
小白菜又菜
Leetcode动态规划(DP)解题报告leetcode算法
ProblemYouaregivenanintegerarraycoinsrepresentingcoinsofdifferentdenominationsandanintegeramountrepresentingatotalamountofmoney.Returnthenumberofcombinationsthatmakeupthatamount.Ifthatamountofmoneycan
- 【Stable Diffusion部署至GNU/Linux】安装流程
星星点点洲
stablediffusion
以下是安装StableDiffusion的步骤,以Ubuntu22.04LTS为例子。显卡与计算架构介绍CUDA是NVIDIAGPU的专用并行计算架构技术层级说明CUDAToolkit提供GPU编译器(nvcc)、数学库(cuBLAS)等开发工具cuDNN深度神经网络加速库(需单独下载)GPU驱动包含CUDADriver(需与CUDAToolkit版本匹配)CUDA与NIDIA:硬件指令集绑定:N
- 【Stable Diffusion部署至Google Colab】
星星点点洲
stablediffusion
GoogleColab中快速搭建带GPU加速的StableDiffusionWebUIfromgoogle.colabimportdrivedrive.mount('/content/drive')!mkdir/content/drive/MyDrive/sd-webui-files!pipinstalltorch==1.13.1+cu116torchvision==0.14.1+cu116tor
- 【学习笔记】李宏毅2021春机器学习课程第2.3节:Adaptive Learning Rate
Harryline-lx
机器学习机器学习人工智能深度学习
文章目录Trainingstuck≠SmallGradientDifferentparametersneedsdifferentlearningrateRootmeansquareAdagradRMSPropAdamLearningRateSchedulingTrainingstuck≠SmallGradient首先要明确的一点是,目前当我们用gradientdescend来做optimizati
- 万字长文破解 AI 图片生成算法-Stable diffusion (第一篇)
悟空 AI
人工智能深度学习
想象一下:你闭上眼睛,脑海中构思一个场景,用简短的语言描述出来,然后“啪”的一声,一张栩栩如生的图片就出现在你眼前。这不再是科幻小说里才有的情节,而是StableDiffusion——一种前沿的AI图片生成算法——所带来的现实。在本系列的万字长文中,我们将深入探索StableDiffusion的神秘面纱,揭秘它是如何将文字描述转化为令人惊叹的视觉艺术。无论你是AI技术的爱好者、数字艺术的探索者,还
- vue和react的区别
匿名用户888
vue.jsreact.jsjavascript
概念Vue是一种渐进式框架,可以逐步应用到现有项目中,也可以作为完整的单页应用开发;React更像是一个视图层库,它只负责应用的视图部分,其他功能如路由、状态管理等需要借助第三方库。1.监听数据变化的实现原理不同Vue通过getter/setter方法以及一些函数的劫持能精确知道数据的变化。React默认是通过比较引用方式diff算法进行的,若不优化,会导致大量不必要的VDom的重新渲染。2.数据
- python中set的用法_Python中set的用法
weixin_39876645
python中set的用法
python的集合类型和其他语言类似,是一个无序不重复元素集,我在之前学过的其他的语言好像没有见过这个类型,基本功能包括关系测试和消除重复元素.集合对象还支持union(联合),intersection(交),difference(差)和sysmmetricdifference(对称差集)等数学运算,和我们初中数学学的集合的非常的相似。1先看下python集合类型的不重复性,这方面做一些去重处理非
- python 集合概念set用法
shuwenting
python基础
Python中set的用法python的集合类型和其他语言类似,是一个无序不重复元素集,我在之前学过的其他的语言好像没有见过这个类型,基本功能包括关系测试和消除重复元素.集合对象还支持union(联合),intersection(交),difference(差)和sysmmetricdifference(对称差集)等数学运算,和我们初中数学学的集合的非常的相似。1先看下python集合类型的不重复
- 【stable diffusion模型】Stable diffusion模型分几种?一文详解,入门必看!
AIGC-Lison
stablediffusion人工智能AI绘画AIGCSD模型
前言在StableDiffusion中,模型并不只有一种,不同插件有不同的模型,分别作用于不同的功能。今天Lison老师就带大家一起来学习一下~01大模型也就是stablediffusion模型,在默认界面中,它位于web页面的左上角,下拉列表对应的模型:可以理解为绘画风格集合,SD需要大模型来规定它生成的图片风格,大模型是必选模型,你必须选择一个大模型才能开始生成工作。所有的AI设计工具,安装包
- Stable Diffusion之最全详解图解
破碎的天堂鸟
学习教程stablediffusion
StableDiffusion是一种革命性的图像生成模型,其发布标志着AI图像生成技术的一个重要里程碑。本文将通过详细的图解和实例演示,全面解析StableDiffusion的工作原理。一、StableDiffusion概览1.1模型起源与特点StableDiffusion由CompVis、StabilityAI和LAION的研究人员于2022年发布。它是一种基于扩散过程的图像生成模型,结合了物理
- INT2067/INT5051 Problem Solving
前端
Assignment1INT2067/INT5051IntroductiontoProgrammingandProblemSolving2024-2025Semester2DueDate:February23,2025(Sunday)1IntroductionInthisassignment,youarerequiredtowriteaprogramthatcalculatesdifferentq
- DexVLA:通用机器人控制中具有插件式扩散专家的视觉语言模型
硅谷秋水
大模型智能体计算机视觉语言模型计算机视觉深度学习机器学习人工智能
25年2月来自美的集团和华东师范的论文“DexVLA:Vision-LanguageModelwithPlug-InDiffusionExpertforGeneralRobotControl”。让机器人能够在不同的环境中执行不同的任务是机器人学习的核心挑战。虽然视觉-语言-动作(VLA)模型已显示出可泛化机器人技能的前景,但要充分发挥其潜力,需要解决动作表示和有效训练方面的限制。当前的VLA模型通
- vue.js之diff算法
前端_学习之路
Vue.jsvue.js前端算法数据结构
在Vue.js中,Diff算法是一个核心的概念,它在虚拟DOM(VirtualDOM)的更新过程中起着关键作用。下面详细介绍Vue.js中的Diff算法。什么是Diff算法Diff算法是一种用于比较两个树结构差异的算法。在Vue.js里,它用于比较新旧虚拟DOM树的差异,从而找出哪些节点需要更新,避免直接操作真实DOM带来的性能开销,因为直接操作真实DOM的代价相对较高。虚拟DOM虚拟DOM是真实
- Grafana8.5.0+Zabbix5.0LTS可视化监控数据
ErbaoLiu
Prometheuszabbixgrafana集成插件可视化
目录Grafana安装下载yum安装验证安装Grafana添加Zabbix数据源安装Zabbix插件配置Zabbix数据源Grafana可视化Zabbix数据Grafana安装下载根据需要下载对应版本的Grafana,下载地址如下:DownloadGrafana|GrafanaLabsOverviewofhowtodownloadandinstalldifferentversionsofGrafa
- DDPM(Denoising Diffusion Probabilistic Models)的公式推导
AndrewHZ
机器学习人工智能深度学习算法
总结:DDPM通过最小化预测噪声的均方误差,使反向过程逐步去噪生成数据。核心推导在于通过变分推断将KL散度转换为噪声预测问题,大幅简化了训练目标。1.前向扩散过程前向过程通过\(T\)步逐渐向数据\(x_0\)添加高斯噪声,最终得到纯噪声\(x_T\)。每步定义为:\[q(x_t|x_{t-1})=\mathcal{N}\left(x_t;\sqrt{1-\beta_t}x_{t-1},\beta
- Stable Diffusion AI软件绘画速成从入门到精通
课兴兴
stablediffusion人工智能
课兴兴资源圈创始人,更多课程干货,欢迎关注(课兴兴)KMastery-StableDiffusionAI软件绘画速成从入门到精通-中英字幕KMasteryStableDiffusionFromNovicetoArtist英文+中英字幕|1080P|14.5GBAI绘画软件速成课程:从初学者到专业人士欢迎来到人工智能绘画软件初学者速成班!无论您是刚刚开始探索绘画世界,还是希望使用人工智能技术增强您的
- 《Stable Diffusion绘画完全指南:从入门到精通的Prompt设计艺术》 第一章
Allen-Steven
python相关应用SD创作实践stablediffusionprompt人工智能
第一章:认识StableDiffusion与Prompt设计基础1.1什么是StableDiffusion:生成原理与核心优势一、颠覆性生成逻辑:从噪声到艺术的魔法逆向降噪原理传统AI绘画:直接生成完整像素StableDiffusion:通过潜扩散模型(LDM),在低维潜空间(LatentSpace)逐步去除噪声,最终解码为高清图像类比解释:如同雕塑家从混沌的大理石中凿出形体,AI在噪声中「雕刻」
- Stable Diffusion 教程基础篇: 如何写出好的prompt,一些技巧和原则
AI想象家
stablediffusionpromptmidjourney人工智能openAIAI作画
StableDiffusion教程-中文AskAIforART·Originaltxt2imgandimg2imgmodes·基础模式之文生图/图生图点击可放大基础入门部分输入一段话,生成一张图。这是AI绘画的核心。入门就是那么简单,不过,这段话怎么写,其实也是有窍门的。在StableDiffusion里面,这段描述也就是Prompt,我们称之为AI的魔法咒语。那么,最开始我们需要怎么做呢?当然是
- 《Stable Diffusion绘画完全指南:从入门到精通的Prompt设计艺术》 第三章
Allen-Steven
python相关应用SD创作实践stablediffusionprompt人工智能
第三章:风格化Prompt专题解析3.1写实类:照片级细节的刻画技巧一、物理仿真引擎构建#写实类Prompt标准模板{"主体描述":"精确物种/型号/品牌(如:Mercedes-AMGGTBlackSeries2025款)","材质系统":[ "PBR材质规范(金属度/粗糙度/法线贴图)", "表面瑕疵(划痕0.2级,灰尘密度0.5)"],"光学系统":[ "镜头参数:佳能RF85mmf/1.2L
- 具身智能训练新思路!将生成视频用于训练机器人
天机️灵韵
具身智能人工智能具身智能
将生成视频用于训练具身智能(EmbodiedAI)确实是近年来备受关注的前沿方向,这一思路通过结合生成式AI(如扩散模型、神经辐射场等)与机器人学习,为解决真实世界数据稀缺、训练成本高等问题提供了新可能。以下从技术逻辑、潜在优势、挑战及案例方向展开分析:一、技术逻辑:如何用生成视频训练机器人?生成式AI构建虚拟环境利用扩散模型(如Sora、StableVideoDiffusion)或3D生成技术(
- C++ 中的 函数
ElseWhereR
c++开发语言
*************C++topic:function*************Imagineaprogramisjustlikeaschool.Namespaceisdifferentcollugesandclassisdifferentclasses.Amemberfunctionofaclasscanbedefinedatthesametimeitisdeclared.Itisimpe
- 神经网络常见激活函数 9-CELU函数
亲持红叶
神经网络常见激活函数深度学习机器学习人工智能数学建模神经网络python
文章目录CELU函数+导函数函数和导函数图像优缺点pytorch中的CELU函数tensorflow中的CELU函数CELU连续可微指数线性单元:CELU(ContinuouslyDifferentiableExponentialLinearUnit),是一种连续可导的激活函数,结合了ELU和ReLU的特点,旨在解决ELU在某些情况下的梯度问题。函数+导函数CELU函数CELU(x)={xx≥0α
- Flux如何工作?这款新图像生成AI可与Midjourney一较高下
硅基创想家
AI-人工智能与大模型人工智能midjourneyFlux大模型人工智能生成图片
Flux是什么?Flux是黑森林实验室(BlackForestLabs)开发的一款新型人工智能图像生成模型。它代表了人工智能生成艺术领域的重大进展,采用了一种“混合架构”,将transformer和diffusion技术相结合,参数规模达120亿。该模型在图像生成方面具备顶尖性能,在精准遵循提示词、视觉质量、图像细节和输出多样性等方面表现卓越。谁创造了Flux?该模型由黑森林实验室推出。这是一家新
- 畅游Diffusion数字人(16):由音乐驱动跳舞视频生成
沉迷单车的追风少年
数字人DiffusionModels与深度学习人工智能深度学习视频生成
畅游Diffusion数字人(0):专栏文章导航前言:从Pose到跳舞视频生成的工作非常多,但是还没有直接从音乐驱动生成的工作。最近字节跳动提出了MuseDance,无需复杂的动作引导输入(如姿势或深度序列),从而使不同专业水平的用户都能轻松进行灵活且富有创意的视频生成。目录贡献概述背景挑战贡献方法详解第一阶段:外观预训练第二阶段:动态触发视频生成训练细节贡献概述背景<
- DeepSeek发布开源多模态大模型Janus-Pro-7B!本地部署+Colab部署!支持图像识别和图像生成!基准测试得分超越OpenAI的DALL·E 3 + Stable Diffusion
AI超元域
stablediffusion人工智能AI编程aiAI作画AIGC
本篇笔记所对应的视频:https://www.bilibili.com/video/BV18DFpeMEps/Janus-Pro-7B是由DeepSeek开发的多模态AI模型,它在理解和生成方面取得了显著的进步。这意味着它不仅可以处理文本,还可以处理图像等其他模态的信息。模型主要特点:统一的架构:Janus-Pro采用单一transformer架构来处理文本和图像信息,实现了真正的多模态理解和生成
- DARTS算法笔记(论文+代码)
朴公英不会飞
NAS算法笔记
DARTS:DIFFERENTIABLEARCHITECTURESEARCH论文链接:DARTS论文代码:DARTS-code本文主要对DARTS算法进行学习,重点关注算法在CIFAR-10,ImageNet(分类问题)的研究。DARTS通过两次近似,将问题简单化,以减少GPU计算天数,局部最优近似全局最优,有限差分近似求梯度。摘要:在CIFAR-10、ImageNet、PennTreebank和
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓