UVa 10256 - The Great Divide 判断凸包相交

模板敲错了于是WA了好几遍……

判断由红点和蓝点分别组成的两个凸包是否相离,是输出Yes,否输出No。

训练指南上的分析:

1.任取红凸包上的一条线段和蓝凸包上的一条线段,判断二者是否相交。如果相交(不一定是规范相交,有公共点就算相交),则无解

2.任取一个红点,判断是否在蓝凸包内。如果是,则无解。蓝点红凸包同理。

其中任何一个凸包退化成点或者线段时需要特判。

其实只需要把上面两个判断顺序颠倒一下,就可以不需要特判。

先判断点是否在凸包内,因为这个考虑了点在凸包边界上的情况,所以后面判凸包线段是否相交时直接用规范相交判断即可。

此时特殊情况包含在了上两种情况中,因此不需要特判。

 

  1 #include <cstdio>

  2 #include <cmath>

  3 #include <algorithm>

  4 

  5 using namespace std;

  6 

  7 const int MAXN = 540;

  8 

  9 const double eps = 1e-10;

 10 

 11 struct Point

 12 {

 13     double x, y;

 14     Point( double x = 0, double y = 0 ):x(x), y(y) { }

 15 };

 16 

 17 typedef Point Vector;

 18 

 19 Vector operator+( Vector A, Vector B )       //向量加

 20 {

 21     return Vector( A.x + B.x, A.y + B.y );

 22 }

 23 

 24 Vector operator-( Vector A, Vector B )       //向量减

 25 {

 26     return Vector( A.x - B.x, A.y - B.y );

 27 }

 28 

 29 Vector operator*( Vector A, double p )      //向量数乘

 30 {

 31     return Vector( A.x * p, A.y * p );

 32 }

 33 

 34 Vector operator/( Vector A, double p )      //向量数除

 35 {

 36     return Vector( A.x / p, A.y / p );

 37 }

 38 

 39 bool operator<( const Point& A, const Point& B )   //两点比较

 40 {

 41     return A.x < B.x || ( A.x == B.x && A.y < B.y );

 42 }

 43 

 44 int dcmp( double x )    //控制精度

 45 {

 46     if ( fabs(x) < eps ) return 0;

 47     else return x < 0 ? -1 : 1;

 48 }

 49 

 50 bool operator==( const Point& a, const Point& b )   //两点相等

 51 {

 52     return dcmp( a.x - b.x ) == 0 && dcmp( a.y - b.y ) == 0;

 53 }

 54 

 55 double Dot( Vector A, Vector B )    //向量点乘

 56 {

 57     return A.x * B.x + A.y * B.y;

 58 }

 59 

 60 double Length( Vector A )           //向量模

 61 {

 62     return sqrt( Dot( A, A ) );

 63 }

 64 

 65 double Angle( Vector A, Vector B )    //向量夹角

 66 {

 67     return acos( Dot(A, B) / Length(A) / Length(B) );

 68 }

 69 

 70 double Cross( Vector A, Vector B )   //向量叉积

 71 {

 72     return A.x * B.y - A.y * B.x;

 73 }

 74 

 75 double Area2( Point A, Point B, Point C )    //向量有向面积

 76 {

 77     return Cross( B - A, C - A );

 78 }

 79 

 80 Vector Rotate( Vector A, double rad )    //向量旋转

 81 {

 82     return Vector( A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad) );

 83 }

 84 

 85 Vector Normal( Vector A )    //向量单位法向量

 86 {

 87     double L = Length(A);

 88     return Vector( -A.y / L, A.x / L );

 89 }

 90 

 91 Point GetLineIntersection( Point P, Vector v, Point Q, Vector w )   //两直线交点

 92 {

 93     Vector u = P - Q;

 94     double t = Cross( w, u ) / Cross( v, w );

 95     return P + v * t;

 96 }

 97 

 98 double DistanceToLine( Point P, Point A, Point B )    //点到直线的距离

 99 {

100     Vector v1 = B - A, v2 = P - A;

101     return fabs( Cross( v1, v2 ) ) / Length(v1);

102 }

103 

104 double DistanceToSegment( Point P, Point A, Point B )   //点到线段的距离

105 {

106     if ( A == B ) return Length( P - A );

107     Vector v1 = B - A, v2 = P - A, v3 = P - B;

108     if ( dcmp( Dot(v1, v2) ) < 0 ) return Length(v2);

109     else if ( dcmp( Dot(v1, v3) ) > 0 ) return Length(v3);

110     else return fabs( Cross( v1, v2 ) ) / Length(v1);

111 }

112 

113 Point GetLineProjection( Point P, Point A, Point B )    // 点在直线上的投影

114 {

115     Vector v = B - A;

116     return A + v*( Dot(v, P - A) / Dot( v, v ) );

117 }

118 

119 bool SegmentProperIntersection( Point a1, Point a2, Point b1, Point b2 )  //线段相交,交点不在端点

120 {

121     double c1 = Cross( a2 - a1, b1 - a1 ), c2 = Cross( a2 - a1, b2 - a1 ),

122                 c3 = Cross( b2 - b1, a1 - b1 ), c4 = Cross( b2 - b1, a2 - b1 );

123     return dcmp(c1)*dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;

124 }

125 

126 bool OnSegment( Point p, Point a1, Point a2 )   //点在线段上,不包含端点

127 {

128     return dcmp( Cross(a1 - p, a2 - p) ) == 0 && dcmp( Dot( a1 - p, a2 - p ) ) < 0;

129 }

130 

131 double toRad( double deg )   //角度转弧度

132 {

133     return deg / 180.0 * acos( -1.0 );

134 }

135 

136 int ConvexHull( Point *p, int n, Point *ch )    //求凸包

137 {

138     sort( p, p + n );

139     n = unique( p, p + n ) - p;

140     int m = 0;

141     for ( int i = 0; i < n; ++i )

142     {

143         while ( m > 1 && Cross( ch[m - 1] - ch[m - 2], p[i] - ch[m - 2] ) <= 0 ) --m;

144         ch[m++] = p[i];

145     }

146 

147     int k = m;

148     for ( int i = n - 2; i >= 0; --i )

149     {

150         while ( m > k && Cross( ch[m - 1] - ch[m - 2], p[i] - ch[m - 2] ) <= 0 ) --m;

151         ch[m++] = p[i];

152     }

153 

154     if ( n > 1 ) --m;

155     return m;

156 }

157 

158 int isPointInPolygon( Point p, Point *poly, int n )   //判断一点是否在凸包内

159 {

160     int wn = 0;

161 

162     for ( int i = 0; i < n; ++i )

163     {

164         Point& p1 = poly[i], p2 = poly[ (i + 1)%n ];

165         if ( p == p1 || p == p2 || OnSegment( p, p1, p2 ) ) return -1;  //在边界上

166         int k = dcmp( Cross( p2 - p1, p - p1 ) );

167         int d1 = dcmp( p1.y - p.y );

168         int d2 = dcmp( p2.y - p.y );

169         if ( k > 0 && d1 <= 0 && d2 > 0 ) ++wn;

170         if ( k < 0 && d2 <= 0 && d1 > 0 ) --wn;

171     }

172 

173     if ( wn ) return 1;   //内部

174     return 0;             //外部

175 }

176 

177 double PolygonArea( Point *p, int n )   //多边形有向面积

178 {

179     double area = 0;

180     for ( int i = 1; i < n - 1; ++i )

181         area += Cross( p[i] - p[0], p[i + 1] - p[0] );

182     return area / 2.0;

183 }

184 

185 bool checkConvexHullIntersection( Point *a, Point *b, int na, int nb )

186 {

187     for ( int i = 0; i < na; ++i )

188         if ( isPointInPolygon( a[i], b, nb ) ) return true;

189 

190     for ( int i = 0; i < nb; ++i )

191         if ( isPointInPolygon( b[i], a, na ) ) return true;

192 

193     for ( int i = 0; i < na; ++i )

194         for ( int j = 0; j < nb; ++j )

195             if ( SegmentProperIntersection(a[i], a[ (i + 1) % na ], b[j], b[ (j + 1) % nb ] ) ) return true;

196 

197     return false;

198 }

199 

200 Point M[MAXN], chM[MAXN];

201 Point C[MAXN], chC[MAXN];

202 

203 int main()

204 {

205     int Mn, Cn;

206     while ( scanf( "%d%d", &Mn, &Cn ), Mn || Cn )

207     {

208         for ( int i = 0; i < Mn; ++i )

209             scanf( "%lf%lf", &M[i].x, &M[i].y );

210 

211         for ( int i = 0; i < Cn; ++i )

212             scanf( "%lf%lf", &C[i].x, &C[i].y );

213 

214         int Mcnt = ConvexHull( M, Mn, chM );

215         int Ccnt = ConvexHull( C, Cn, chC );

216 

217         if ( checkConvexHullIntersection( chM, chC, Mcnt, Ccnt ) ) puts("No");

218         else puts("Yes");

219     }

220     return 0;

221 }

 

 

你可能感兴趣的:(ide)