leetcode第11题--Container With Most Water

Problem:

Given n non-negative integers a1a2, ..., an, where each represents a point at coordinate (iai). n vertical lines are drawn such that the two endpoints of line i is at (iai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.

Note: You may not slant the container.

题目的意思是,在(x,y)坐标中,每个点做与x轴垂直的直线后,求哪两根直线和x轴所能装的水最多,不能倾斜的意思就是不是指梯形的面积,而是短板效应的矩形面积。先暴力试了下,练了下手感。不出所料N方的超时。

class Solution {

public:

int maxArea(vector<int> &height)

{

    int area = 0, temparea;

    int *temp = new int[height.size()];

    for (int i = 0; i < height.size(); i++)

    {

        int maxN = 0;

        for (int j = 0; j < height.size(); j++)

        {

            if (i != j)

            {

                temparea = (height[i]<height[j]?height[i]:height[j]) * abs(j - i);

                if (temparea > maxN)

                    maxN = temparea;

            }

        }

        temp[i] = maxN;

    }

    for (int i = 0; i < height.size(); i++)

    {

        if (temp[i] > area)

            area = temp[i];

    }

    delete[] temp;

    return area;

}

};

后来还想,能不能排序之后再判断,发现sort又是不稳定的所以就放弃了。后来发现可以从两边往里收缩的办法解决。两边往里的还有第一题Two Sum也是这样做的。

为什么用两边往里呢,因为我们我们要的面积是两条直线的距离*两条直线短的那条的值,所以,我们先定一个,距离最大就是头和尾了,如果比这个距离小的,又还想比我现在大的话,那就只有高增加才有可能,这个时候就是把短的那条对应的位置往前看一位,看看可不可能有比短的长,且乘出来的面积是比之前大的,如果大,那就记录下来。为什么要用短的那边往里看呢,因为如果长的往里的话,就是下去一根再长也是根据短板效应看短的。根据这个思路自己整理了下代码如下:

class Solution {

public:

int maxArea(vector<int> &height)

{

    int left = 0, right = height.size() - 1; 

    int maxA = 0; 

    while(left < right)

    {

        if (height[left] < height[right])

        {

            int tmp = (right - left) * height[left];

            left++;

            if (tmp > maxA)

                maxA = tmp;

        }

        else

        {

            int tmp = (right - left) * height[right];

            if (tmp > maxA)

                maxA = tmp;

            right--;

        }

    }

    return maxA;    

}

};

这样就Accept了

 

2015/03/29:

class Solution {

public:

    int maxArea(vector<int> &height) {

        int l = 0, r = height.size()-1, water = 0;

        while(l < r){

            water = max(water, (r - l) * (height[l] > height[r] ? height[r--] : height[l++]));

        }

        return water;

    }

};

python:

class Solution:

    # @return an integer

    def maxArea(self, height):

        water, l, r = 0, 0, len(height)-1

        while l < r:

            water = max(water, (r - l)*min(height[l], height[r]))

            if height[l] < height[r]:

                l += 1

            else:

                r -= 1

        return water

 

你可能感兴趣的:(LeetCode)