Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
class Solution { public: int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) { // Start typing your C/C++ solution below // DO NOT write int main() function int m=obstacleGrid.size(); int n=obstacleGrid[0].size(); vector<vector<int>> paths(m,vector<int>(n,0)); if(obstacleGrid.at(0).at(0)==1) { return 0; } else{ paths.at(0).at(0)=1; } for(int i=1;i<m;i++) { if(obstacleGrid.at(i).at(0)==0 && paths.at(i-1).at(0)==1) paths.at(i).at(0)=1; } for(int i=1;i<n;i++) { if(obstacleGrid.at(0).at(i)==0 && paths.at(0).at(i-1)==1) paths.at(0).at(i)=1; } for(int i=1;i<m;i++) { for(int j=1;j<n;j++) { if(obstacleGrid.at(i).at(j)==1) paths.at(i).at(j)=0; else paths.at(i).at(j)=paths.at(i).at(j-1)+paths.at(i-1).at(j); } } return paths.at(m-1).at(n-1); } };