标题: | Search a 2D Matrix |
通过率 | 31.3% |
难度 | 中等 |
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
For example,
Consider the following matrix:
[ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ]
Given target = 3
, return true
.
本题思路清晰,就是再一个二维数组中找某个元素,那么立即想到了二分法,关键点,按行算,第k个元素的行数等于k/列数,列数等于k%列数。
还有一种思路就是,每一行的开头一定比上一行全部元素都大,那么从最后一行的第一个开始,每次比较每行的第一个,找到第一个比target小的元素,也就说明了target若存在一定在那一行,
1、二分法查找代码如下:
1 public class Solution { 2 public boolean searchMatrix(int[][] matrix, int target) { 3 if(matrix==null || matrix.length==0 || matrix[0].length==0) 4 return false; 5 6 int m = matrix.length; 7 int n = matrix[0].length; 8 9 int start = 0; 10 int end = m*n-1; 11 12 while(start<=end){ 13 int mid=(start+end)/2; 14 int midX=mid/n; 15 int midY=mid%n; 16 17 if(matrix[midX][midY]==target) 18 return true; 19 20 if(matrix[midX][midY]<target){ 21 start=mid+1; 22 }else{ 23 end=mid-1; 24 } 25 } 26 27 return false; 28 } 29 }
2、查找第一个小的数:
1 public class Solution { 2 public boolean searchMatrix(int[][] matrix, int target) { 3 int m=matrix.length; 4 int n=matrix[0].length; 5 int i=m-1; 6 int j=0; 7 while(i>=0){ 8 if(matrix[i][0]>target)i--; 9 else break; 10 } 11 if(i<0)return false; 12 while(j<n){ 13 if(matrix[i][j]==target)return true; 14 else j++; 15 } 16 return false; 17 18 } 19 }
3、python代码:
1 class Solution: 2 def searchMatrix(self, matrix, target): 3 i, j = 0, len(matrix[0]) - 1 4 while i < len(matrix) and j >= 0: 5 if target < matrix[i][j]: 6 j -= 1 7 elif target > matrix[i][j]: 8 i += 1 9 else: 10 return True 11 return False