- Pyecharts数据可视化大屏:打造沉浸式数据分析体验
我的运维人生
信息可视化数据分析数据挖掘运维开发技术共享
Pyecharts数据可视化大屏:打造沉浸式数据分析体验在当今这个数据驱动的时代,如何将海量数据以直观、生动的方式展现出来,成为了数据分析师和企业决策者关注的焦点。Pyecharts,作为一款基于Python的开源数据可视化库,凭借其丰富的图表类型、灵活的配置选项以及高度的定制化能力,成为了构建数据可视化大屏的理想选择。本文将深入探讨如何利用Pyecharts打造数据可视化大屏,并通过实际代码案例
- Faiss Tips:高效向量搜索与聚类的利器
焦习娜Samantha
FaissTips:高效向量搜索与聚类的利器faiss_tipsSomeusefultipsforfaiss项目地址:https://gitcode.com/gh_mirrors/fa/faiss_tips项目介绍Faiss是由FacebookAIResearch开发的一个用于高效相似性搜索和密集向量聚类的库。它支持多种硬件平台,包括CPU和GPU,能够在海量数据集上实现快速的近似最近邻搜索(AN
- Hadoop
傲雪凌霜,松柏长青
后端大数据hadoop大数据分布式
ApacheHadoop是一个开源的分布式计算框架,主要用于处理海量数据集。它具有高度的可扩展性、容错性和高效的分布式存储与计算能力。Hadoop核心由四个主要模块组成,分别是HDFS(分布式文件系统)、MapReduce(分布式计算框架)、YARN(资源管理)和HadoopCommon(公共工具和库)。1.HDFS(HadoopDistributedFileSystem)HDFS是Hadoop生
- hbase介绍
CrazyL-
云计算+大数据hbase
hbase是一个分布式的、多版本的、面向列的开源数据库hbase利用hadoophdfs作为其文件存储系统,提供高可靠性、高性能、列存储、可伸缩、实时读写、适用于非结构化数据存储的数据库系统hbase利用hadoopmapreduce来处理hbase、中的海量数据hbase利用zookeeper作为分布式系统服务特点:数据量大:一个表可以有上亿行,上百万列(列多时,插入变慢)面向列:面向列(族)的
- Flume:大规模日志收集与数据传输的利器
傲雪凌霜,松柏长青
后端大数据flume大数据
Flume:大规模日志收集与数据传输的利器在大数据时代,随着各类应用的不断增长,产生了海量的日志和数据。这些数据不仅对业务的健康监控至关重要,还可以通过深入分析,帮助企业做出更好的决策。那么,如何高效地收集、传输和存储这些海量数据,成为了一项重要的挑战。今天我们将深入探讨ApacheFlume,它是如何帮助我们应对这些挑战的。一、Flume概述ApacheFlume是一个分布式、可靠、可扩展的日志
- 高职人工智能训练师边缘计算实训室解决方案
武汉唯众智创
人工智能训练师边缘计算实训室人工智能训练师实训室边缘计算实训室
一、引言随着物联网(IoT)、大数据、人工智能(AI)等技术的飞速发展,计算需求日益复杂和多样化。传统的云计算模式虽在一定程度上满足了这些需求,但在处理海量数据、保障实时性与安全性、提升计算效率等方面仍面临诸多挑战。在此背景下,边缘计算作为一种新兴的计算模式应运而生,通过将计算能力推向数据生成或用户所在的网络边缘,显著降低了数据传输的延迟,提升了处理效率,并增强了数据安全性。针对高等职业院校的人工
- Spark集群的三种模式
MelodyYN
#Sparksparkhadoopbigdata
文章目录1、Spark的由来1.1Hadoop的发展1.2MapReduce与Spark对比2、Spark内置模块3、Spark运行模式3.1Standalone模式部署配置历史服务器配置高可用运行模式3.2Yarn模式安装部署配置历史服务器运行模式4、WordCount案例1、Spark的由来定义:Hadoop主要解决,海量数据的存储和海量数据的分析计算。Spark是一种基于内存的快速、通用、可
- HBase(一)——HBase介绍
weixin_30595035
大数据数据库数据结构与算法
HBase介绍1、关系型数据库与非关系型数据库(1)关系型数据库关系型数据库最典型的数据机构是表,由二维表及其之间的联系所组成的一个数据组织优点:1、易于维护:都是使用表结构,格式一致2、使用方便:SQL语言通用,可用于复杂查询3、复杂操作:支持SQL,可用于一个表以及多个表之间非常复杂的查询缺点:1、读写性能比较差,尤其是海量数据的高效率读写2、固定的表结构,灵活度稍欠3、高并发读写需求,传统关
- HBase介绍
mingyu1016
数据库
概述HBase是一个分布式的、面向列的开源数据库,源于google的一篇论文《bigtable:一个结构化数据的分布式存储系统》。HBase是GoogleBigtable的开源实现,它利用HadoopHDFS作为其文件存储系统,利用HadoopMapReduce来处理HBase中的海量数据,利用Zookeeper作为协同服务。HBase的表结构HBase以表的形式存储数据。表有行和列组成。列划分为
- Java中的大数据处理框架对比分析
省赚客app开发者
java开发语言
Java中的大数据处理框架对比分析大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!今天,我们将深入探讨Java中常用的大数据处理框架,并对它们进行对比分析。大数据处理框架是现代数据驱动应用的核心,它们帮助企业处理和分析海量数据,以提取有价值的信息。本文将重点介绍ApacheHadoop、ApacheSpark、ApacheFlink和ApacheStorm这四种流行的
- 海量数据查找最大K个值:数据结构与算法的选择
星辰@Sea
数据结构Java数据结构
在处理大数据集时,经常需要找到数据集中最大的K个元素,这样的需求在很多领域都有广泛应用,例如推荐系统中寻找评分最高的K个商品、数据分析中找出最重要的K个特征、搜索引擎中找到排名前K的结果等等。面对海量数据,传统的排序方法可能不再适用,因为它们通常具有较高的时间复杂度。因此,选择合适的数据结构和算法对于提高效率至关重要。本文将详细介绍如何在海量数据集中查找最大的K个值,探讨不同的数据结构与算法选择,
- 【架构师之路】四、系统架构
蜗牛互联网
架构Java数据库运维
高并发,大流量Google日均PV数35亿,日均IP访问数3亿微信在线用户数10亿天猫双十一活动一天交易额3000亿高可用系统7*24小时不间断服务。大型互联网站的宕机事件通常会成为新闻焦点。海量数据需要存储、管理海量数据。Facebook每周上传的照片数目接近10亿百度收录的网页数目有数百亿Google有近百万台服务器为全球用户提供服务用户分布广泛,网络情况复杂中美光缆的数次故障,也让一些对国外
- 淘宝海量数据库OceanBase:系统架构详解
weixin_34356555
数据库系统架构大数据
无论从数据量还是访问量,OceanBase不再能够是一个单机系统,即使一台单机能服务高达几个TB的数据、提供几万QPS的服务能力,因此,分布式系统不可避免,然而,内部如何实现拆表(拆库)以及如何实现数据库的事务,成为了一个很大的挑战和十分艰难的抉择:相关文章:淘宝海量数据库之一:来自业务的挑战淘宝海量数据库之二:一致性选择淘宝海量数据库之三:事务的ACID一种选择是当前数据库的常用的水平拆库,淘宝
- 大家对人工智能的发展怎么看?
川哥说运营
人工智能
对人工智能产品发展的几点认识说起人工智能的时候,大家都在说是机器具有了人的思维,可以进行情感表达,决策判断。并且通过越多的数据和越长的训练,智能性会越来越高。那么这种智能怎么来评价其可用性,包括怎么训练,怎么集成,怎么选择呢?人工智能的基础在这个点上,我们谈一下要做到人工智能需要的几个必备条件。海量数据“海量”数据究竟是多少,其实对于不同的学习目标标准是不一样的。训练一个具有智能和学习能力的算法,
- 数据治理:企业如何精准管理与高效利用数据?
ShiTuanWang
数据挖掘大数据数据分析网络
当今这个信息爆炸的时代,数据已成为企业最宝贵的资产之一。随着大数据、云计算、人工智能等技术的飞速发展,如何有效管理和利用数据,以驱动业务增长、优化决策过程、提升用户体验,成为了每一家企业都需直面的重大挑战。在数字化转型的浪潮中,数据不再是冷冰冰的数字堆砌,而是转化为洞察市场、预测趋势、指导决策的重要力量。然而,海量数据的快速增长也带来了存储、处理、分析及安全等方面的多重挑战。企业若想在竞争激烈的市
- StarRocks on AWS Graviton3,实现 50% 以上性价比提升
StarRocks_labs
大数据数据库数据仓库湖仓一体云计算
在数据时代,企业拥有前所未有的大量数据资产,但如何从海量数据中发掘价值成为挑战。数据分析凭借强大的分析能力,可从不同维度挖掘数据中蕴含的见解和规律,为企业战略决策提供依据。数据分析在营销、风险管控、产品优化等领域发挥着关键作用,帮助企业提高运营效率、优化业务流程、发现新商机、增强竞争力。低成本高效率的完成对海量数据的分析,及时准确的释放数据价值,已成为企业赢得竞争优势的利器。StarRockson
- HBase
傲雪凌霜,松柏长青
大数据后端hbase数据库大数据
ApacheHBase是一个基于Hadoop分布式文件系统(HDFS)构建的分布式、面向列的NoSQL数据库,主要用于处理大规模、稀疏的表结构数据。HBase的设计灵感来自Google的Bigtable,能够在海量数据中提供快速的随机读写操作,适合需要低延迟和高吞吐量的应用场景。HBase核心概念表(Table):HBase的数据存储在表中,与传统的关系型数据库不同,HBase的表是面向列族(Co
- Hive的优势与使用场景
傲雪凌霜,松柏长青
后端大数据hivehadoop数据仓库
Hive的优势Hive作为一个构建在Hadoop上的数据仓库工具,具有许多优势,特别是在处理大规模数据分析任务时。以下是Hive的主要优势:1.与Hadoop生态系统的紧密集成Hive构建在Hadoop分布式文件系统(HDFS)之上,能够处理海量数据并进行分布式计算。它利用Hadoop的MapReduce或Spark来执行查询,具备高度扩展性,适合大数据处理。2.支持SQL-like查询语言(Hi
- 大数据技术之Hadoop(一)
pauls
Hadoop概述1.1Hadoop是什么Hadoop是什么1)Hadoop是一个由Apache基金会所开发的分布式系统基础架构。2)主要解决,海量数据的存储和海量数据的分析计算问题。3)广义上来说,Hadoop通常是指一个更广泛的概念——Hadoop生态圈。Hadoop生态1.2Hadoop发展历史(了解)Hadoop发展历史1)Hadoop创始人DougCutting,为了实现与Google类似
- ES elasticsearch集群入门
小P聊技术
1介绍使用单机的版的elasticsearch可以完成检索,但是如果要实现高可用的话,就需要搭建集群。集群不仅可以实现高可用,也能实现海量数据存储的横向扩展。2核心原理每个索引会被分成多个分片shards进行存储,默认创建索引是分配5个分片进行存储。每个分片都会分布式部署在多个不同的节点上进行部署,该分片成为primaryshards。注意:索引的主分片primaryshards定义好后,后面不能
- 使用AI大模型进行企业数据分析与决策支持
MarkHD
人工智能数据分析数据挖掘
使用AI大模型进行企业数据分析与决策支持已成为现代企业管理的重要趋势。AI大模型凭借其强大的数据处理能力和智能分析功能,能够为企业提供精准、高效的数据分析服务,进而支持企业的决策过程。以下是使用AI大模型进行企业数据分析与决策支持的具体方式和优势:一、AI大模型在数据分析中的应用超级数据处理能力海量数据处理:AI大模型能够同时处理海量数据,包括结构化数据、非结构化数据等,满足企业大规模数据分析的需
- CPU服务器如何应对大规模并行计算需求?
Jtti
服务器运维
大规模并行计算是指利用多个处理单元同时处理计算任务,以提高计算效率和缩短完成时间。这种计算方式常用于科学计算、数据分析、机器学习、图像处理等领域,面对海量数据与复杂计算时,传统的串行计算往往显得无能为力。现代CPU通常具备多个核心,这使得它们能够在同一时间内并行执行多个线程或任务。多核处理器可以大幅提升并行计算能力,适合处理大型计算任务。CPU服务器通常配备多级高速缓存(L1、L2、L3),有效减
- 图像去噪算法代码c语言,深度学习图像去噪代码
weixin_39777018
图像去噪算法代码c语言
AI开发平台ModelArtsModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。按需/包周期付费可选,最低0.00元/小时导入操作||https://support.huaweicloud.com/engineers-
- 【Spark高级应用】使用Spark进行高级数据处理与分析
爱技术的小伙子
大数据sparkajax大数据
Spark高级应用使用Spark进行高级数据处理与分析引言在大数据时代,快速处理和分析海量数据是每个企业面临的重大挑战。ApacheSpark作为一种高效的分布式计算框架,凭借其高速、易用、通用和灵活的特点,已经成为大数据处理和分析的首选工具。本文将深入探讨如何使用Spark进行高级数据处理与分析,通过实际案例和代码示例,帮助你掌握Spark的高级应用技巧。提出问题如何进行高效的大规模数据处理?如
- 大数据(Big Data):探索信息时代的海量数据世界
hong161688
大数据
大数据(BigData):探索信息时代的海量数据世界一、大数据的定义与特点大数据(BigData),或称巨量资料,是指那些在传统数据处理应用软件无法有效捕捉、管理和处理的数据集合。这些数据集通常具有海量、高增长率和多样化的特点,需要新的处理模式才能赋予其更强的决策力、洞察发现力和流程优化能力。大数据的“大”不仅体现在数据量的规模上,更在于其处理难度和复杂性,以及对信息提取和价值挖掘的需求。大数据的
- 国产海量数据库安装部署文档
人生不过大梦一场
db数据库windowslinux
本系统为麒麟V10系统,安装用户为普通用户给予sudo权限,主机内存16G(8G安装没装起来)#默认端口5432对外端口数据库对外提供访问5433对内端口Basebackup与复制流协议系统环境设置#关闭防火墙(二者执行一个)sudosystemctlstopfirewalld.service&&sudosystemctldisablefirewalld&&sudosystemctlstatusf
- 布隆过滤器
guangzhi0633
面试职场和发展
揭秘数据筛选的神秘利器在浩瀚的数据海洋中,如何快速、准确地找到我们需要的信息?这不仅是数据科学家的难题,也是每一个与数据打交道的人面临的挑战。今天,让我们一起走进布隆过滤器(BloomFilter)的世界,看看这个被誉为“筛选神器”的技术如何帮助我们在海量数据中淘金。布隆过滤器的奥秘想象一下,你手中有一个巨大的筛子,它不仅能过滤掉无用的沙子,还能智能地保留下珍贵的金粒。布隆过滤器就是这样的“智慧筛
- Redis概述
AC编程
一、为什么需要NoSQLHighperformance高并发读写HugeStorage海量数据的高效率存储和访问HighScalability&&HighAvailability高可拓展性和高可用性二、NoSQL数据库的四大分类键值(Key-Value)存储列存储文档数据库图形数据库三、四类NoSQL数据库比较键值(Key-Value)存储相关产品:Redis、Voldemort、TokyoCab
- 人工智能训练师边缘计算实训室解决方案
武汉唯众智创
人工智能训练师边缘计算实训室人工智能训练师边缘计算实训室
一、引言随着物联网(IoT)、大数据、人工智能(AI)等技术的飞速发展,计算需求日益复杂和多样化。传统的云计算模式虽在一定程度上满足了这些需求,但在处理海量数据、保障实时性与安全性、提升计算效率等方面仍面临诸多挑战。边缘计算作为一种新兴的计算模式应运而生,通过将计算能力推向数据生成或用户所在的网络边缘,显著降低了数据传输的延迟,提升了处理效率,并增强了数据安全性。在此背景下,唯众提出了《人工智能训
- 守护云安全:数据保护与合规的最佳实践
网安加社区
安全网络云安全云原生数据安全
随着云技术的蓬勃发展,企业对云服务日益依赖,保障用于存储与管理海量数据的云端平台的安全性也变得极其重要。如何保障云安全的背后也隐藏着一个不容忽视的要点:数据安全责任需由云服务提供商与客户共同承担。这种责任共担模型规定,云服务提供商负责保护其服务基础设施的安全,企业负责保护其在云环境中的数据和应用程序的安全。但当涉及基础设施即服务(IaaS)与平台即服务(PaaS)等多种服务模式时,执行这种责任共担
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement