- 【AI大模型】26、算力受限下的模型工程:从LoRA到弹性智能系统的优化实践
无心水
AI大模型人工智能搜索引擎LoRA大语言模型微调模型压缩知识蒸馏量化技术
引言:算力瓶颈与模型工程的突围之路在人工智能领域,大语言模型的发展正呈现出参数规模爆炸式增长的趋势。从GPT-3的1750亿参数到PaLM的5400亿参数,模型能力的提升往往伴随着对算力资源的极度渴求。然而,对于大多数企业和研究者而言,动辄数百GB的显存需求、数十万块GPU的训练集群显然是难以企及的"算力鸿沟"。当面对"无米之炊"的困境时,模型工程技术成为突破算力瓶颈的核心路径——通过算法创新而非
- OpenAI “黑手党“:硅谷新一代创业势力崛起,重塑AI时代格局
花生糖@
AI·未来创业创新AI创业
引言:从ChatGPT到超级智能——OpenAI生态的裂变效应2015年成立的OpenAI,凭借ChatGPT的横空出世彻底改变了人工智能产业格局。随着估值飙升至3000亿美元,这家颠覆性创新实验室正经历一场静默的"人才大迁徙"。昔日塑造AGI(通用人工智能)梦想的核心团队成员,如今正带着各自的技术愿景,在硅谷掀起新一轮创业浪潮。这场由OpenAI前员工发起的创业运动,正在形成堪比PayPalMa
- 大模型应用10种架构模式全解析:从理论到实战的技术指南
ai大模型雪糕
架构人工智能学习ai大模型大模型资料分享大模型评估人工智能
近年来,以GPT-4、LLaMA、PaLM为代表的大模型彻底改变了人工智能的应用范式。然而,如何高效地将这些“庞然大物”落地到实际业务中,仍是开发者面临的核心挑战。本文系统梳理了10种主流架构模式,涵盖模型优化、工程部署、多模态融合等关键场景,并提供代码示例与选型建议。一、架构模式全景图在深入细节前,先通过一张表格快速了解各模式的核心价值:架构模式核心目标典型场景开源工具案例端到端微调最大化任务性
- 大模型时代的具身智能系列专题(十)
视言
机器人具身智能deeplearning具身智能机器人计算机视觉深度学习人工智能
SergeyLevine团队SergeyLevine目前是UCBerkeley电气工程与计算机科学系的副教授,同时是RAIL(RoboticAI&LearningLab@BAIR)实验室主任。除了在Berkeley的教职,Levine也是GoogleBrain的研究员,他也参与了Google知名的机器人大模型PALM-E,RT1和RT2。SergeyLevine于2009年获得斯坦福大学计算机科学
- 全球大型语言模型(LLM)技术全景:从GPT到文心一言的智能本质探析
阿部多瑞 ABU
语言模型gpt文心一言
标题:全球大型语言模型(LLM)技术全景:从GPT到文心一言的智能本质探析摘要本文系统解析全球主流LLM(包括OpenAIGPT系列、GooglePaLM、MetaLLaMA及中国文心一言、通义千问等)的技术架构与测试表现,结合认知科学与工程学视角,探讨其通过图灵测试的实质意义。通过对比国内外模型的实现路径,揭示统计学驱动型AI与强人工智能(AGI)的本质鸿沟。1.LLM的技术本质:全球模型的共性
- 【大模型面试每日一题】Day 33:深度解析GPT-3与PaLM的规模扩展差异及影响
是麟渊
LLMInterviewDaily面试每日一题面试gpt-3palm职场和发展自然语言处理架构
【大模型面试每日一题】Day33:深度解析GPT-3与PaLM的规模扩展差异及影响题目重现面试官:请对比分析GPT-3与PaLM在模型规模扩展上的核心差异,及其对性能、应用场景和行业的影响。规模扩展参数规模训练数据架构设计GPT-3:1750亿PaLM:5400亿单语言vs多模态Transformer解码器Multi-QueryAttention核心考点模型缩放定律理解:参数规模、数据量与模型性能
- ILRuntime中实现OSA
☆平常心☆
Unity实例unityc#
什么是ILRuntime?ILRuntime项⽬为基于C#的平台(例如Unity)提供了⼀个纯C#实现,快速、⽅便且可靠的IL运⾏时,使得能够在不⽀持JIT的硬件环境(如iOS)能够实现代码的热更新。具体可以学习:http://https://ourpalm.github.io/ILRuntime/public/v1/guide/index.html,本文不再赘述。代码实现OSABaseAdapt
- 【大模型面试每日一题】Day 25:如何通过模型压缩技术将千亿模型部署到边缘设备?
是麟渊
LLMInterviewDaily面试每日一题面试深度学习人工智能职场和发展自然语言处理语言模型神经网络
【大模型面试每日一题】Day25:如何通过模型压缩技术将千亿模型部署到边缘设备?题目重现面试官:我们需要将千亿参数大模型(如PaLM)部署到边缘设备(如JetsonAGXOrin),请设计一个包含量化、蒸馏等压缩技术的部署方案,并说明需要重点考虑的硬件约束、延迟限制、精度损失等关键因素。大模型模型压缩量化蒸馏结构优化内存约束精度损失计算效率核心考点模型压缩技术理解能力:能否系统性分析量化、蒸馏等技
- Datawhale-llm-universe 第一章 LLM介绍打卡
星野yee
人工智能自然语言处理chatgptpython
第一章课程大纲:(本笔记大部分内容来自DataWhale的六月llm打卡课程,并融入了一些个人的理解以及思考)大型语言模型LLM理论简介LLM的定义和概念发展历程主要模型(如GPT-3、GPT-4、PaLM等)典型应用场景LLM的能力和特点检索增强生成RAG简介RAG的概念工作流程优势和应用与微调(Finetune)的比较环境配置Python环境安装依赖库安装虚拟环境管理JupyterNotebo
- 大语言模型的安全与隐私风险:全面解析与应对策略
@Rocky
语言模型安全人工智能
大语言模型的安全与隐私风险:全面解析与应对策略引言随着大语言模型(LLMs)在各个领域的广泛应用,其安全性和隐私保护问题日益凸显。从ChatGPT到GPT-4、PaLM、LLaMA和DeepSeek等模型,这些技术为我们带来了革命性的体验,但同时也带来了严重的安全风险和隐私隐患。本文旨在全面解析大语言模型面临的安全威胁和隐私风险,分析实际案例,并探讨有效的防御措施和最佳实践,帮助开发者和企业在享受
- DeepSeek实战--微调
AI掘金
ai大模型微调大模型AIGCAI应用
1.为什么是微调?微调LLM(Fine-tuningLargeLanguageModels)是指基于预训练好的大型语言模型(如GPT、LLaMA、PaLM等),通过特定领域或任务的数据进一步训练,使其适应具体需求的过程。它是将通用语言模型转化为专用模型的核心方法。2.微调适用于哪些场景?1)领域专业化医疗:微调后的模型可理解医学论文、生成诊断建议。法律:准确引用法律条文,避免生成错误解释。2)任务
- python搭建环境的心得体会_Python 环境搭建
weixin_39929153
python搭建环境的心得体会
Python环境搭建Python可应用于多平台包括Linux和MacOSX。你可以通过终端窗口输入"python"命令来查看本地是否已经安装Python以及Python的安装版本。Unix(Solaris,Linux,FreeBSD,AIX,HP/UX,SunOS,IRIX,等等。)Win9x/NT/2000Macintosh(Intel,PPC,68K)OS/2DOS(多个DOS版本)PalmO
- AI日报 - 2025年04月30日
訾博ZiBo
AI日报人工智能
今日概览(60秒速览)▎AGI突破|扎克伯格预言通用智能将超越个体,Neuralink助ALS患者思维交流通用智能系统潜力巨大,脑机接口实现重大应用突破。▎商业动向|阿里巴巴发布Qwen3,xAI推Grok3Mini/3.5,Axiom获1500万美元融资大型模型竞争加剧,AI初创公司获资本青睐,企业级AI应用加速落地(CohereCommandA,WriterPalmyraX5,McKinsey
- 主流 AI 系列模型大梳理(一):技术、性能、特色与应用对比
进一步有进一步的欢喜
LLM人工智能LLaMAPaLMGPTGeminiClaudeMidjourney
目录一、LLaMA系列LLaMALLaMA2二、PaLM系列PaLMPaLM2PaLM-E三、OpenAI系列GPT-1GPT-2GPT-3ChatGPTGPT-4GPT-4Turboo1系列o3及o3-mini四、Gemini系列Gemini1.0Gemini1.5Gemini1.5FlashGemini2.0五、Claude系列Claude3Claude3.5Sonnet六、StableDif
- 缓存服务器Cache Server 6.0发布
IT 哈
无论是在个人的本地电脑,还是在团队的局域网专有服务器上,缓存服务器都能通过优化资源导入过程让使用Unity开发的速度变得更快。远程缓存服务器CacheServer6.0版本现已发布,缓存服务器的质量和性能获得大幅提高。这次的改进十分庞大,下面将由AssetBundles研发主管StephenPalmer为大家介绍详情。访问GitHub下载CacheServer6.0:https://github.
- 通用人工智能的火花:GPT-4 的早期实验
强化学习曾小健
LLM大语言模型人工智能
人工智能(AI)研究人员一直在开发和改进大型语言模型(LLM),这些模型在各种领域和任务中展现出卓越的能力,挑战我们对学习和认知的理解。OpenAI开发的最新模型GPT-4使用前所未有的计算和数据规模进行训练。在本文中,我们报告了我们对GPT-4早期版本的调查,当时它仍在由OpenAI积极开发。我们认为(这个早期版本的)GPT-4是一组新的LLM(例如ChatGPT和谷歌的PaLM路径语言模型)的
- 大模型巅峰对决:DeepSeek vs GPT-4/Claude/PaLM-2 全面对比与核心差异揭秘
金枝玉叶9
程序员知识储备1程序员知识储备2程序员知识储备3palm
大模型巅峰对决:DeepSeekvsGPT-4/Claude/PaLM-2全面对比与核心差异揭秘摘要本文旨在对当前大模型领域的代表性产品——DeepSeek、GPT-4、Claude和PaLM-2进行全方位对比,深入解析各自的技术架构、核心功能、性能表现及应用场景。通过文献调研、实验数据分析和用户反馈调查,我们探讨了各大模型在自然语言处理、语义理解和智能生成等关键任务中的表现差异,为业界提供了一份
- 大模型巅峰对决:DeepSeek vs GPT-4 / Claude / PaLM-2全面对比与核心差异揭秘
荣华富贵8
程序员的知识储备1程序员的知识储备2程序员的知识储备3palm
随着人工智能领域的飞速发展,各大厂商纷纷推出旗舰级大模型。DeepSeek、GPT-4、Claude与PaLM-2均在自然语言处理与生成任务中展现出卓越性能。本文将深入剖析这些大模型在架构设计、训练策略、推理速度、开放性与定制化等方面的核心差异,并通过详细代码示例展示如何构建统一接口进行模型对比测试。一、背景介绍近年来,大模型凭借其卓越的自然语言理解与生成能力,广泛应用于智能客服、内容创作、编程助
- 干货分享:中国人工智能大模型技术白皮书,大模型入门从0-1,看完你算是学完了半个大模型!
AI大模型入门教程
人工智能大数据llamalangchain语言模型
《中国人工智能大模型技术白皮书》全面梳理了大模型技术的发展历程、关键技术、生态发展、应用实践等方面的最新进展,并对其未来趋势做出展望。一、大模型:人工智能发展的重要里程碑大模型是指参数量达到百亿、千亿乃至更高数量级的超大规模机器学习模型。近年来,随着算法创新、算力提升、数据增长等因素的推动,大模型在语义理解、知识表示、逻辑推理等方面实现了跨越式突破。以ChatGPT、PaLM、Megatron-T
- 【动态规划】友好城市
hongjianMa
Acwing算法课学习笔记记录动态规划算法c++学习
友好城市题解题目传送门友好城市-AcWing一、题目重述Palmia国有一条横贯东西的大河,南北两岸各有N个位置不同的城市。北岸每个城市在南岸有且仅有一个友好城市,且这些配对各不相同。现在要在这些友好城市对之间建立直线航道,要求任意两条航道不能相交。求最多能批准多少条航道的建设申请。二、题目分析这个问题可以转化为:在给定的城市对中,选择尽可能多的对,使得这些对按照某一岸排序后,另一岸的坐标是严格递
- 【人工智能时代】- 大型语言模型(LLM)理论简介
xiaoli8748_软件开发
人工智能时代人工智能语言模型自然语言处理
一、什么是大型语言模型(LLM)1.1大型语言模型(LLM)的概念大语言模型(LLM,LargeLanguageModel),也称大型语言模型,是一种旨在理解和生成人类语言的人工智能模型。LLM通常指包含数百亿(或更多)参数的语言模型,它们在海量的文本数据上进行训练,从而获得对语言深层次的理解。目前,国外的知名LLM有GPT-3.5、GPT-4、PaLM、Claude和LLaMA等,国内的有文心一
- 信息学奥赛一本通 1263:友好城市(evd)
everwide1982
经验动态规划LIS
【题目描述】Palmia国有一条横贯东西的大河,河有笔直的南北两岸,岸上各有位置各不相同的N个城市。北岸的每个城市有且仅有一个友好城市在南岸,而且不同城市的友好城市不相同。每对友好城市都向政府申请在河上开辟一条直线航道连接两个城市,但是由于河上雾太大,政府决定避免任意两条航道交叉,以避免事故。编程帮助政府做出一些批准和拒绝申请的决定,使得在保证任意两条航线不相交的情况下,被批准的申请尽量多。【输入
- WRF移动嵌套结合伏羲模型与CFD(PALM)高精度多尺度降尺度分析研究
Hardess-god
WRF算法人工智能
随着大气科学与数值模拟技术的发展,高精度多尺度气象模拟日益成为科研与应用的热点问题。本文将详细介绍如何使用WRF移动嵌套技术结合伏羲(Fuxi)模型,并通过CFD模型PALM实现精细化降尺度,以满足城市或区域局地精细化气象预报的需求。1.技术路线概述WRF移动嵌套(MovingNesting):动态调整高分辨率嵌套网格位置,追踪天气系统(如台风、强对流系统)以提高局地预报精度。伏羲(Fuxi)模型
- 国外7个最佳大语言模型 (LLM) API推荐
幂简集成
API新理念语言模型人工智能自然语言处理
大型语言模型(LLM)API将彻底改变我们处理语言的方式。在深度学习和机器学习算法的支持下,LLMAPI提供了前所未有的自然语言理解能力。通过利用这些新的API,开发人员现在可以创建能够以前所未有的方式理解和响应书面文本的应用程序。下面,我们将比较从Bard到ChatGPT、PaLM等市场上顶级LLMAPI。我们还将探讨整合这些LLM的潜在用例,并考虑其对语言处理的影响。什么是大语言模型(LLM)
- 使用LangChain实现大规模语言模型自发现推理结构
VYSAHF
langchain语言模型人工智能python
使用LangChain实现大规模语言模型自发现推理结构在现代自然语言处理(NLP)的研究中,大规模语言模型(LLMs)已经展示了强大的能力。然而,在应对复杂的推理问题时,传统的提示方法常常力不从心。这篇文章将带您了解SELF-DISCOVER,一种新兴的框架,如何通过LangChain来实现自动化、动态化的推理结构构建,以提高LLMs的性能。技术背景介绍大规模语言模型(如GPT-4和PaLM2)已
- 大模型巅峰对决:DeepSeek vs GPT-4/Claude/PaLM-2 全面对比与核心差异揭秘
accurater
机器学习科技人工智能
喜欢可以到主页订阅专栏目录技术架构对比性能表现与基准测试多模态与多语言能力推理效率与成本分析开源生态与行业适配应用场景与案例研究未来发展与技术趋势代码实现与调用示例1.技术架构对比DeepSeek:动态稀疏激活的混合专家系统(MoE)动态路由机制:每个输入仅激活约5.5%的参数(如6710亿参数中激活370亿),显著降低计算能耗40%。模块化设计:支持金融、医疗等领域的即插即用式微调,行业适配能力
- 大语言模型微调和大语言模型应用的区别?
AI Echoes
人工智能深度学习机器学习
大语言模型微调和大语言模型应用的区别?1.定义与目标微调(Fine-tuning)目标:调整预训练模型(如GPT、LLaMA、PaLM)的参数,使其适应特定任务或领域。核心:通过额外的训练(使用特定数据集)优化模型的性能,提升其在特定场景下的效果。例如:将通用模型微调为法律咨询、医疗诊断或金融分析的专业模型。应用(Application)目标:直接使用预训练或微调后的模型解决实际问题,无需修改模型
- 聊天模型集成指南
三月七꧁ ꧂
langchain+llmmicrosoft语言模型prompt人工智能自然语言处理开发语言llama
文章目录聊天模型集成指南Anthropic聊天模型集成PaLM2聊天模型集成OpenAl聊天模型集成聊天模型集成指南 随着GPT-4等大语言模型的突破,聊天机器人已经不仅仅是简单的问答工具,它们现在广泛应用于客服、企业咨询、电子商务等多种场景,为用户提供准确、快速的反馈。在这样的背景下,开发者们急需一套可以轻松切换、集成不同平台的工具。正是基于这样的需求,Anthropic、PaLM2和Op
- PalmImage-开源:图像格式转换器的开源项目解析
胡说先森
本文还有配套的精品资源,点击获取简介:PalmImage是一个开源Java应用程序,专为桌面和服务器环境设计,它能够将GIF、JPEG等常见图像格式以及View文档转换为适用于Palm设备的格式。通过Java技术的应用,PalmImage提供跨平台支持,并利用JavaAPI处理图像转换。作为开源项目,它鼓励社区参与改进,并提供免费使用的优势。同时,PalmImage的命令行界面和脚本自动化为用户提
- 探索 LangChain: 架构、组件和应用
田猿笔记
LangChainlangchain人工智能
介绍每个组件及其用途:1.ModelModel组件是LangChain的核心,它抽象并提供了大语言模型(LLM)的接口。LLM模型用途:提供与多种LLM供应商的接口,如OpenAI、GooglePaLM2、Ollama等。OpenAI示例:fromlangchain.llmsimportOpenAIopenai_llm=OpenAI(model_name="gpt-3.5-turbo")respo
- java观察者模式
3213213333332132
java设计模式游戏观察者模式
观察者模式——顾名思义,就是一个对象观察另一个对象,当被观察的对象发生变化时,观察者也会跟着变化。
在日常中,我们配java环境变量时,设置一个JAVAHOME变量,这就是被观察者,使用了JAVAHOME变量的对象都是观察者,一旦JAVAHOME的路径改动,其他的也会跟着改动。
这样的例子很多,我想用小时候玩的老鹰捉小鸡游戏来简单的描绘观察者模式。
老鹰会变成观察者,母鸡和小鸡是
- TFS RESTful API 模拟上传测试
ronin47
TFS RESTful API 模拟上传测试。
细节参看这里:https://github.com/alibaba/nginx-tfs/blob/master/TFS_RESTful_API.markdown
模拟POST上传一个图片:
curl --data-binary @/opt/tfs.png http
- PHP常用设计模式单例, 工厂, 观察者, 责任链, 装饰, 策略,适配,桥接模式
dcj3sjt126com
设计模式PHP
// 多态, 在JAVA中是这样用的, 其实在PHP当中可以自然消除, 因为参数是动态的, 你传什么过来都可以, 不限制类型, 直接调用类的方法
abstract class Tiger {
public abstract function climb();
}
class XTiger extends Tiger {
public function climb()
- hibernate
171815164
Hibernate
main,save
Configuration conf =new Configuration().configure();
SessionFactory sf=conf.buildSessionFactory();
Session sess=sf.openSession();
Transaction tx=sess.beginTransaction();
News a=new
- Ant实例分析
g21121
ant
下面是一个Ant构建文件的实例,通过这个实例我们可以很清楚的理顺构建一个项目的顺序及依赖关系,从而编写出更加合理的构建文件。
下面是build.xml的代码:
<?xml version="1
- [简单]工作记录_接口返回405原因
53873039oycg
工作
最近调接口时候一直报错,错误信息是:
responseCode:405
responseMsg:Method Not Allowed
接口请求方式Post.
- 关于java.lang.ClassNotFoundException 和 java.lang.NoClassDefFoundError 的区别
程序员是怎么炼成的
真正完成类的加载工作是通过调用 defineClass来实现的;
而启动类的加载过程是通过调用 loadClass来实现的;
就是类加载器分为加载和定义
protected Class<?> findClass(String name) throws ClassNotFoundExcept
- JDBC学习笔记-JDBC详细的操作流程
aijuans
jdbc
所有的JDBC应用程序都具有下面的基本流程: 1、加载数据库驱动并建立到数据库的连接。 2、执行SQL语句。 3、处理结果。 4、从数据库断开连接释放资源。
下面我们就来仔细看一看每一个步骤:
其实按照上面所说每个阶段都可得单独拿出来写成一个独立的类方法文件。共别的应用来调用。
1、加载数据库驱动并建立到数据库的连接:
Html代码
St
- rome创建rss
antonyup_2006
tomcatcmsxmlstrutsOpera
引用
1.RSS标准
RSS标准比较混乱,主要有以下3个系列
RSS 0.9x / 2.0 : RSS技术诞生于1999年的网景公司(Netscape),其发布了一个0.9版本的规范。2001年,RSS技术标准的发展工作被Userland Software公司的戴夫 温那(Dave Winer)所接手。陆续发布了0.9x的系列版本。当W3C小组发布RSS 1.0后,Dave W
- html表格和表单基础
百合不是茶
html表格表单meta锚点
第一次用html来写东西,感觉压力山大,每次看见别人发的都是比较牛逼的 再看看自己什么都还不会,
html是一种标记语言,其实很简单都是固定的格式
_----------------------------------------表格和表单
表格是html的重要组成部分,表格用在body里面的
主要用法如下;
<table>
&
- ibatis如何传入完整的sql语句
bijian1013
javasqlibatis
ibatis如何传入完整的sql语句?进一步说,String str ="select * from test_table",我想把str传入ibatis中执行,是传递整条sql语句。
解决办法:
<
- 精通Oracle10编程SQL(14)开发动态SQL
bijian1013
oracle数据库plsql
/*
*开发动态SQL
*/
--使用EXECUTE IMMEDIATE处理DDL操作
CREATE OR REPLACE PROCEDURE drop_table(table_name varchar2)
is
sql_statement varchar2(100);
begin
sql_statement:='DROP TABLE '||table_name;
- 【Linux命令】Linux工作中常用命令
bit1129
linux命令
不断的总结工作中常用的Linux命令
1.查看端口被哪个进程占用
通过这个命令可以得到占用8085端口的进程号,然后通过ps -ef|grep 进程号得到进程的详细信息
netstat -anp | grep 8085
察看进程ID对应的进程占用的端口号
netstat -anp | grep 进程ID
&
- 优秀网站和文档收集
白糖_
网站
集成 Flex, Spring, Hibernate 构建应用程序
性能测试工具-JMeter
Hmtl5-IOCN网站
Oracle精简版教程网站
鸟哥的linux私房菜
Jetty中文文档
50个jquery必备代码片段
swfobject.js检测flash版本号工具
- angular.extend
boyitech
AngularJSangular.extendAngularJS API
angular.extend 复制src对象中的属性去dst对象中. 支持多个src对象. 如果你不想改变一个对象,你可以把dst设为空对象{}: var object = angular.extend({}, object1, object2). 注意: angular.extend不支持递归复制. 使用方法: angular.extend(dst, src); 参数:
- java-谷歌面试题-设计方便提取中数的数据结构
bylijinnan
java
网上找了一下这道题的解答,但都是提供思路,没有提供具体实现。其中使用大小堆这个思路看似简单,但实现起来要考虑很多。
以下分别用排序数组和大小堆来实现。
使用大小堆:
import java.util.Arrays;
public class MedianInHeap {
/**
* 题目:设计方便提取中数的数据结构
* 设计一个数据结构,其中包含两个函数,1.插
- ajaxFileUpload 针对 ie jquery 1.7+不能使用问题修复版本
Chen.H
ajaxFileUploadie6ie7ie8ie9
jQuery.extend({
handleError: function( s, xhr, status, e ) {
// If a local callback was specified, fire it
if ( s.error ) {
s.error.call( s.context || s, xhr, status, e );
}
- [机器人制造原则]机器人的电池和存储器必须可以替换
comsci
制造
机器人的身体随时随地可能被外来力量所破坏,但是如果机器人的存储器和电池可以更换,那么这个机器人的思维和记忆力就可以保存下来,即使身体受到伤害,在把存储器取下来安装到一个新的身体上之后,原有的性格和能力都可以继续维持.....
另外,如果一
- Oracle Multitable INSERT 的用法
daizj
oracle
转载Oracle笔记-Multitable INSERT 的用法
http://blog.chinaunix.net/uid-8504518-id-3310531.html
一、Insert基础用法
语法:
Insert Into 表名 (字段1,字段2,字段3...)
Values (值1,
- 专访黑客历史学家George Dyson
datamachine
on
20世纪最具威力的两项发明——核弹和计算机出自同一时代、同一群年青人。可是,与大名鼎鼎的曼哈顿计划(第二次世界大战中美国原子弹研究计划)相 比,计算机的起源显得默默无闻。出身计算机世家的历史学家George Dyson在其新书《图灵大教堂》(Turing’s Cathedral)中讲述了阿兰·图灵、约翰·冯·诺依曼等一帮子天才小子创造计算机及预见计算机未来
- 小学6年级英语单词背诵第一课
dcj3sjt126com
englishword
always 总是
rice 水稻,米饭
before 在...之前
live 生活,居住
usual 通常的
early 早的
begin 开始
month 月份
year 年
last 最后的
east 东方的
high 高的
far 远的
window 窗户
world 世界
than 比...更
- 在线IT教育和在线IT高端教育
dcj3sjt126com
教育
codecademy
http://www.codecademy.com codeschool
https://www.codeschool.com teamtreehouse
http://teamtreehouse.com lynda
http://www.lynda.com/ Coursera
https://www.coursera.
- Struts2 xml校验框架所定义的校验文件
蕃薯耀
Struts2 xml校验Struts2 xml校验框架Struts2校验
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 15:54:59 星期六
http://fa
- mac下安装rar和unrar命令
hanqunfeng
mac
1.下载:http://www.rarlab.com/download.htm 选择
RAR 5.21 for Mac OS X 2.解压下载后的文件 tar -zxvf rarosx-5.2.1.tar 3.cd rar sudo install -c -o $USER unrar /bin #输入当前用户登录密码 sudo install -c -o $USER rar
- 三种将list转换为map的方法
jackyrong
list
在本文中,介绍三种将list转换为map的方法:
1) 传统方法
假设有某个类如下
class Movie {
private Integer rank;
private String description;
public Movie(Integer rank, String des
- 年轻程序员需要学习的5大经验
lampcy
工作PHP程序员
在过去的7年半时间里,我带过的软件实习生超过一打,也看到过数以百计的学生和毕业生的档案。我发现很多事情他们都需要学习。或许你会说,我说的不就是某种特定的技术、算法、数学,或者其他特定形式的知识吗?没错,这的确是需要学习的,但却并不是最重要的事情。他们需要学习的最重要的东西是“自我规范”。这些规范就是:尽可能地写出最简洁的代码;如果代码后期会因为改动而变得凌乱不堪就得重构;尽量删除没用的代码,并添加
- 评“女孩遭野蛮引产致终身不育 60万赔偿款1分未得”医腐深入骨髓
nannan408
先来看南方网的一则报道:
再正常不过的结婚、生子,对于29岁的郑畅来说,却是一个永远也无法实现的梦想。从2010年到2015年,从24岁到29岁,一张张新旧不一的诊断书记录了她病情的同时,也清晰地记下了她人生的悲哀。
粗暴手术让人发寒
2010年7月,在酒店做服务员的郑畅发现自己怀孕了,可男朋友却联系不上。在没有和家人商量的情况下,她决定堕胎。
12月5日,
- 使用jQuery为input输入框绑定回车键事件 VS 为a标签绑定click事件
Everyday都不同
jspinput回车键绑定clickenter
假设如题所示的事件为同一个,必须先把该js函数抽离出来,该函数定义了监听的处理:
function search() {
//监听函数略......
}
为input框绑定回车事件,当用户在文本框中输入搜索关键字时,按回车键,即可触发search():
//回车绑定
$(".search").keydown(fun
- EXT学习记录
tntxia
ext
1. 准备
(1) 官网:http://www.sencha.com/
里面有源代码和API文档下载。
EXT的域名已经从www.extjs.com改成了www.sencha.com ,但extjs这个域名会自动转到sencha上。
(2)帮助文档:
想要查看EXT的官方文档的话,可以去这里h
- mybatis3的mapper文件报Referenced file contains errors
xingguangsixian
mybatis
最近使用mybatis.3.1.0时无意中碰到一个问题:
The errors below were detected when validating the file "mybatis-3-mapper.dtd" via the file "account-mapper.xml". In most cases these errors can be d