基于图像特征的视觉跟踪系统(Feature-based visual tracking systems)


最近读到一篇关于视觉跟踪的综述性文章,“Evaluation of Interest Point Detectors and Feature Descriptors for Visual Tracking”,发表在2011年3月International Journal of Computer Vision上。作者非常详尽的评估了2010年之前的图像检测子及图像描述子(检测子包括Harris Corner、Shi-Tomasi' feature、DoG、Fast Hessian、FAST、CenSurE;描述子包括Image Patch、SIFT、SURF、keypoint classification with Randomized Trees、keypoint classification with Randomized Ferns),以及它们用于视觉跟踪时的各项性能,并且提供精心设计的数据集http://ilab.cs.ucsb.edu/tracking_dataset_ijcv/


视觉跟踪是许多应用的核心部分,包括视觉里程计(visual odomety)、基于视觉的同步定位与地图创建(visual Simultaneous Localization and Mapping)以及增强视觉(Augmented Reality)。这些应用的需求不同,但是都需要鲁棒、精确、快速实时的底层视觉跟踪方法。光流法(optical flow)与基于特征的跟踪方法(feature-basedvisual tracking)是视觉跟踪的两种主要方法,而后者更为常用。


文中归纳了截止2010年已有的基于特征的视觉跟踪系统,已经算非常详尽。

论文下载地址:cs.iupui.edu/~tuceryan/pdf-repository/Gauglitz2011.pdf







 

你可能感兴趣的:(System)