基于Android的ELF PLT/GOT符号和重定向过程ELF Hook实现(by 低端农业代码 2014.10.27)


介绍

技术原因写这篇文章,有两种:

  • 一个是在大多数在线叙述性说明发现PLT/GOT第二十符号重定向过程定向x86的,例《Redirecting functions in shared ELF libraries》就写得很不错。尽管其过程跟ARM很相似。但由于CPU体系不同,指令实现差异很大;
  • 其二是网上大部分关于ELF文件格式的介绍,都是基于链接视图(Linking View),链接视图是基于节(Section)对ELF进行解析的。然而动态链接库在载入的过程中,linker仅仅关注ELF中的段(Segment)信息。因此ELF中的节信息被全然篡改或者甚至删除掉,并不会影响linker的载入过程,这样做能够防止静态分析工具(比方IDA,readelf等)对其进行分析,一般加过壳的ELF文件都会有这方面的处理。对于这样的ELF文件。假设要实现hook功能。则必须要基于运行视图(Execution View)进行符号解析;

准备

在往下阅读之前。请先确保对ELF文件格式和ARM汇编有个大概了解。參考指引:

准备工具:

  • readelf(NDK包括)
  • objdump(NDK包括)
  • IDA Pro 6.4或以上
  • Android真机或者模拟器

符号重定向

在ARM上。常见的重定向类型。主要有三种,各自是R_ARM_JUMP_SLOTR_ARM_ABS32R_ARM_GLOB_DAT。而我们要hook elf函数。则须要同一时候处理好这三种重定向类型。

样例

先看演示样例代码

typedef int (*strlen_fun)(const char *);
strlen_fun global_strlen1 = (strlen_fun)strlen;
strlen_fun global_strlen2 = (strlen_fun)strlen;

#define SHOW(x) LOGI("%s is %d", #x, x)

extern "C" jint Java_com_example_allhookinone_HookUtils_elfhook(JNIEnv *env, jobject thiz){
    const char *str = "helloworld";

    strlen_fun local_strlen1 = (strlen_fun)strlen;
    strlen_fun local_strlen2 = (strlen_fun)strlen;

    int len0 = global_strlen1(str);
    int len1 = global_strlen2(str);
    int len2 = local_strlen1(str);
    int len3 = local_strlen2(str);
    int len4 = strlen(str);
    int len5 = strlen(str);

    SHOW(len0);
    SHOW(len1);
    SHOW(len2);
    SHOW(len3);
    SHOW(len4);
    SHOW(len5);

    return 0;
}


这段代码分别以三种不同的方式调用strlen,各自是全局函数指针、局部函数指针以及直接调用。下而我们针对这个样例。分别对三种调用分析进行分析。

先通过readelf,我们查看一下重定向表,例如以下所看到的:

Relocation section '.rel.dyn' at offset 0x2a48 contains 17 entries:
 Offset     Info    Type            Sym.Value  Sym. Name
0000ade0  00000017 R_ARM_RELATIVE   
0000af00  00000017 R_ARM_RELATIVE   
0000af0c  00000017 R_ARM_RELATIVE   
0000af10  00000017 R_ARM_RELATIVE   
0000af18  00000017 R_ARM_RELATIVE   
0000af1c  00000017 R_ARM_RELATIVE   
0000af20  00000017 R_ARM_RELATIVE   
0000af24  00000017 R_ARM_RELATIVE   
0000af28  00000017 R_ARM_RELATIVE   
0000af30  00000017 R_ARM_RELATIVE   
0000aefc  00003215 R_ARM_GLOB_DAT    00000000   __stack_chk_guard
0000af04  00003715 R_ARM_GLOB_DAT    00000000   __page_size
0000af08  00004e15 R_ARM_GLOB_DAT    00000000   strlen
0000b004  00004e02 R_ARM_ABS32       00000000   strlen
0000b008  00004e02 R_ARM_ABS32       00000000   strlen
0000af14  00006615 R_ARM_GLOB_DAT    00000000   __gnu_Unwind_Find_exid
0000af2c  00007415 R_ARM_GLOB_DAT    00000000   __cxa_call_unexpected

...
...

Relocation section '.rel.plt' at offset 0x2ad0 contains 48 entries:
 Offset     Info    Type            Sym.Value  Sym. Name
0000af40  00000216 R_ARM_JUMP_SLOT   00000000   __cxa_atexit
0000af44  00000116 R_ARM_JUMP_SLOT   00000000   __cxa_finalize
0000af48  00001716 R_ARM_JUMP_SLOT   00000000   memcpy
...
0000afd4  00004c16 R_ARM_JUMP_SLOT   00000000   fgets
0000afd8  00004d16 R_ARM_JUMP_SLOT   00000000   fclose
0000afdc  00004e16 R_ARM_JUMP_SLOT   00000000   strlen
0000afe0  00004f16 R_ARM_JUMP_SLOT   00000000   strncmp
...
...


在.rel.plt和.rel.dyn两个section中,我们发现一共出现了4个strlen,我们先把它们的关键信息记录下来,后面分析会很实用。它们各自是

.rel.dyn 0000AF08 R_ARM_GLOB_DAT

.rel.dyn 0000B004 R_ARM_ABS32.rel.dyn 0000B008 R_ARM_ABS32.rel.plt 0000AFDC R_ARM_JUMP_SLOT

在代码中。我们一共调用了6次strlen,但为什么仅仅出现了4次呢?另外,它们之间又是怎样相应的呢,带着这些问题去分析汇编代码。

把编译出来的so拖到IDA。我们看到演示样例代码的指令:

.text:000050BC                 EXPORT Java_com_example_allhookinone_HookUtils_elfhook
.text:000050BC Java_com_example_allhookinone_HookUtils_elfhook
.text:000050BC
.text:000050BC var_40          = -0x40
.text:000050BC var_38          = -0x38
.text:000050BC var_34          = -0x34
.text:000050BC s               = -0x2C
.text:000050BC var_28          = -0x28
.text:000050BC var_24          = -0x24
.text:000050BC var_20          = -0x20
.text:000050BC var_1C          = -0x1C
.text:000050BC var_18          = -0x18
.text:000050BC var_14          = -0x14
.text:000050BC var_10          = -0x10
.text:000050BC var_C           = -0xC
.text:000050BC
.text:000050BC                 PUSH            {R4,LR}
.text:000050BE                 SUB             SP, SP, #0x38
.text:000050C0                 STR             R0, [SP,#0x40+var_34]
.text:000050C2                 STR             R1, [SP,#0x40+var_38]
.text:000050C4                 LDR             R4, =(_GLOBAL_OFFSET_TABLE_ - 0x50CA)
.text:000050C6                 ADD             R4, PC ; _GLOBAL_OFFSET_TABLE_
.text:000050C8                 LDR             R3, =(aHelloworld - 0x50CE)
.text:000050CA                 ADD             R3, PC  ; "helloworld"
.text:000050CC                 STR             R3, [SP,#0x40+s]
.text:000050CE                 LDR             R3, =(strlen_ptr - 0xAF34)
.text:000050D0                 LDR             R3, [R4,R3] ; __imp_strlen
.text:000050D2                 STR             R3, [SP,#0x40+var_28]
.text:000050D4                 LDR             R3, =(strlen_ptr - 0xAF34)
.text:000050D6                 LDR             R3, [R4,R3] ; __imp_strlen
.text:000050D8                 STR             R3, [SP,#0x40+var_24]
.text:000050DA                 LDR             R3, =(global_strlen1_ptr - 0xAF34)
.text:000050DC                 LDR             R3, [R4,R3] ; global_strlen1
.text:000050DE                 LDR             R3, [R3]
.text:000050E0                 LDR             R2, [SP,#0x40+s]
.text:000050E2                 MOVS            R0, R2
.text:000050E4                 BLX             R3
.text:000050E6                 MOVS            R3, R0
.text:000050E8                 STR             R3, [SP,#0x40+var_20]
.text:000050EA                 LDR             R3, =(global_strlen2_ptr - 0xAF34)
.text:000050EC                 LDR             R3, [R4,R3] ; global_strlen2
.text:000050EE                 LDR             R3, [R3]
.text:000050F0                 LDR             R2, [SP,#0x40+s]
.text:000050F2                 MOVS            R0, R2
.text:000050F4                 BLX             R3
.text:000050F6                 MOVS            R3, R0
.text:000050F8                 STR             R3, [SP,#0x40+var_1C]
.text:000050FA                 LDR             R2, [SP,#0x40+s]
.text:000050FC                 LDR             R3, [SP,#0x40+var_28]
.text:000050FE                 MOVS            R0, R2
.text:00005100                 BLX             R3
.text:00005102                 MOVS            R3, R0
.text:00005104                 STR             R3, [SP,#0x40+var_18]
.text:00005106                 LDR             R2, [SP,#0x40+s]
.text:00005108                 LDR             R3, [SP,#0x40+var_24]
.text:0000510A                 MOVS            R0, R2
.text:0000510C                 BLX             R3
.text:0000510E                 MOVS            R3, R0
.text:00005110                 STR             R3, [SP,#0x40+var_14]
.text:00005112                 LDR             R3, [SP,#0x40+s]
.text:00005114                 MOVS            R0, R3  ; s
.text:00005116                 BLX             strlen
.text:0000511A                 MOVS            R3, R0
.text:0000511C                 STR             R3, [SP,#0x40+var_10]
.text:0000511E                 LDR             R3, [SP,#0x40+s]
.text:00005120                 MOVS            R0, R3  ; s
.text:00005122                 BLX             strlen
.text:00005126                 MOVS            R3, R0
    ...
    ...
.text:000051CA                 ADD             SP, SP, #0x38
.text:000051CC                 POP             {R4,PC}
.text:000051CC ; End of function Java_com_example_allhookinone_HookUtils_elfhook


先把几个重要的地址找出来。它们各自是

  • GLOBAL_OFFSET_TABLE: 0x0000AF34
  • strlen_ptr: 0x0000AF08
  • __imp_strlen: 0x0000B0C8
  • global_strlen1_ptr: 0x0000AF0C
  • global_strlen1: 0x0000B004
  • global_strlen2_ptr: 0x0000AF10
  • global_strlen2: 0x0000B008

全局函数指针调用外部函数

global_strlen1和global_strlen2的调用。相应0x000050E4和0x000050F4两处的BLX指令,通过计算终于R3的值各自是*global_strlen1和*global_strlen2,而global_strlen1和global_strlen2的值正好相应位于.rel.dyn的两个R_ARM_ABS32的重定位项,因此我们得出结论:通过全局函数指针的方式调用外部函数。它的重定位类型是R_ARM_ABS32,而且位于.rel.dyn节区

我们仅仅分析global_strlen1的调用过程,首先定位到global_strlen1_ptr(0x0000AF0C)。该地址位于.got节区,GLOBAL_OFFSET_TABLE的上方。然后再通过global_strlen1_ptr定位到0x0000B004(位于.data节区),最后再通过0x0000B004定位到终于的函数地址,因此R_ARM_ABS32重定位项的Offset指向终于调用函数地址的地址(也就是函数指针的指针),整个重定位过程是先位到.got,再从.got定位到.date。

以下是.got段区的16进制表示片段:

...
0000AF0C  04 B0 00 00 08 B0 00 00  DC B0 00 00 B4 87 00 00
0000AF1C  F4 84 00 00 60 5B 00 00  58 5B 00 00 50 5B 00 00
0000AF2C  EC B0 00 00 FC 8C 00 00  00 00 00 00 00 00 00 00
...
0000B004  C8 B0 00 00 C8 B0 00 00  ?? ?

? ?? ?? ??

?? ?? ?

? 0000B014 ?

? ?

?

?

? ?? ??

?

?

?? ?

? ??

?? ??

?? ?? ?? ??

??

0000B024 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ... 0000B0C8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0000B0D8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...


最后发现0x0000B0C8地址片的指令全为0,当动态链接时,linker会覆盖0x0000B004地址的值,指向strlen的真正地址(而不是如今的0x0000B0C8,有点绕)。

局部函数指针调用外部函数

local_strlen1和local_strlen2的调用,相应0x00005100和0x0000510C两处的BLX指令,通过计算终于R3的值都是*strlen_prt。即0x0000AF08,正好相应位于.rel.dyn中的R_ARM_GLOB_DAT重定位项。因此我们得出结论:通过局部函数指针方式调用外部函数。它的重定位类型是R_ARM_GLOB_DAT。而且位于.re.dyn节区

我们仅仅分析local_strlen1的调用过程,首先是定位到strlen_prt(0x0000AF08),该地址位于.got节区,GLOBAL_OFFSET_TABLE的上方,然后再通过strlen_prt,定位到0x0000B0C8,跟上面分析的结果竟然一样,因此R_ARM_GLOB_DAT的重定项Offset指向终于调用函数地址的地址(也就是函数指针的指针),以下是.got段区的16进制表示片段:

0000AF08  C8 B0 00 00 04 B0 00 00  08 B0 00 00 DC B0 00 00
0000AF18  B4 87 00 00 F4 84 00 00  60 5B 00 00 58 5B 00 00
0000AF28  50 5B 00 00 EC B0 00 00  FC 8C 00 00 00 00 00 00
...
0000B0C8  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00
0000B0D8  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00
...

须要注意的是。0x000050D8的指令“STR R3, [SP,#0x40+var_24]”,这里已经把函数的真实地址保存到堆栈了,因此哪怕我们改动了GOT表也不会影响堆栈的值,因此这样的重定位类型无法通过改动地址进行hook

直接调用外部函数

最后看看strlen的直接调用。相应0x0000511A和0x00005122两处的BLX指令。最后它们都指向.plt节区指令,例如以下所看到的:

.plt:00002E38                 ADR             R12, 0x2E40
.plt:00002E3C                 ADD             R12, R12, #0x8000
.plt:00002E40                 LDR             PC, [R12,#(strlen_ptr_0 - 0xAE40)]! ; __imp_strlen
...
0000AFDC  C8 B0 00 00 CC B0 00 00  D0 B0 00 00 D4 B0 00 00 
0000AFEC  D8 B0 00 00 DC B0 00 00  E0 B0 00 00 E4 B0 00 00 
0000AFFC  E8 B0 00 00 00 00 00 00  C8 B0 00 00 C8 B0 00 00 
...

最后。PC指向*strlen_ptr_0,即strlen_ptr_0的地址0x0000AFDC,该地址位于.got节区,而0x0000AFDC地址值的正好是0x0000B0C8,多么熟悉的身影。因此得到结论,直接调用外部函数,它的重定位类型是R_ARM_JUMP_SLOT,而且位于.re.plt节区。其Offset指向终于调用函数地址的地址(也就是函数指针的指针)。整个过程是先到.plt。再到.got,最后才定位到真正的函数地址。

关于这部分的分析,发现IDA和objdump的反编译结果有些差异,以下是通过objdump到的汇编指令:

00002e38 <strlen@plt>:
    2e38:   e28fc600    add ip, pc, #0, 12
    2e3c:   e28cca08    add ip, ip, #8, 20  ; 0x8000
    2e40:   e5bcf19c    ldr pc, [ip, #412]! ; 0x19c
...
...
    afd8:   00002c50    andeq   r2, r0, r0, asr ip
    afdc:   00002c50    andeq   r2, r0, r0, asr ip
    afe0:   00002c50    andeq   r2, r0, r0, asr ip
    afe4:   00002c50    andeq   r2, r0, r0, asr ip

见到afdc处的地址,指向的是0x00002c50,而0x00002c50正好是PLT[0],指令例如以下:

00002c50 <__cxa_atexit@plt-0x14>:
    2c50:   e52de004    push    {lr}        ; (str lr, [sp, #-4]!)
    2c54:   e59fe004    ldr lr, [pc, #4]    ; 2c60 <__cxa_atexit@plt-0x4>
    2c58:   e08fe00e    add lr, pc, lr
    2c5c:   e5bef008    ldr pc, [lr, #8]!
    2c60:   000082d4    ldrdeq  r8, [r0], -r4

运行2c5c处指令后,终于pc指向0x0000af3c,正好是GLOBAL_OFFSET_TABLE + 8,即GOT[2],我们看到0x0000af3c处:

0000AF3C  00 00 00 00 28 B0 00 00  24 B0 00 00 2C B0 00 00
0000AF4C  30 B0 00 00 34 B0 00 00  38 B0 00 00 3C B0 00 00

结果发现GOT[2]里指向的函数地址竟然是0。这是由于android上的符号绑定并不支持lazy绑定。所以当so被载入时。linker会预先把GOT[n](n>=2)的所相应的函数都提前找出来。因此这里GOT[2]的代码实际上不会被运行,因此在眼下的Android上,并不存在完整的PLT/GOT链接过程。

猜想这主要是出于稳定性考虑的。

总结

尽管IDA和obudump两个工具反编译得出的指令在PLT\GOT过程中有些区别,但对于Android而言。事实上这个差异不会造成影响,由于Android上不支持lazy绑定。同一时候我们得出一个很重要的结论:R_ARM_ABS32、R_ARM_GLOB_DAT和R_ARM_JUMP_SLOT的重定位项尽管在代码中使用方法不一样,但其offset都是指向一个函数的指针的指针。这个对于我们以下进行elfhook很实用。

基于运行视图解析ELF

《Redirecting functions in shared ELF libraries》这篇文章所提供的样例,就是基于链接视图对ELF进行解析的,与基于运行视图进行解析相比。后面的逻辑基本是一样的,关键是要通过segment找到.dynsym、.dynstr、.rel.plt和rel.dyn,以及它们的项数。

首次通过Program Header Table找到类型为PT_DYNAMIC的段。该的内容事实上相应.dynamic,这段的内容相应Elf32_Dyn类型的数组。其结构体例如以下所看到的:

/* Dynamic structure */
typedef struct {
    Elf32_Sword d_tag;      /* controls meaning of d_val */
    union {
        Elf32_Word  d_val;  /* Multiple meanings - see d_tag */
        Elf32_Addr  d_ptr;  /* program virtual address */
    } d_un;
} Elf32_Dyn;


通过遍历这个数组,我们能够找到全部的须要的信息。我把它们的相应关系列出来:

  • DT_HASH -> .hash
  • DT_SYMTAB & DT_SYMENT -> .dynsym
  • DT_STRTAB & DT_STRSZ -> .dynstr
  • PLTREL(决定REL还是RELA) &(DT_REL | DT_RELA) & (DT_RELSZ | DT_RELASZ ) & (DT_RELENT | DT_RELAENT ) -> .rel.dyn
  • DT_JMPREL & DT_PLTRELSZ & (DT_RELENT | DT_RELAENT) -> .rel.plt
  • FINI_ARRAY & FINI_ARRAYSZ -> .fini_array
  • INIT_ARRAY & INIT_ARRAYSZ -> .init_array

这是查找的相关代码:

void getElfInfoBySegmentView(ElfInfo &info, const ElfHandle *handle){

    info.handle = handle;
    info.elf_base = (uint8_t *) handle->base;
    info.ehdr = reinterpret_cast<Elf32_Ehdr *>(info.elf_base);

    // may be wrong
    info.shdr = reinterpret_cast<Elf32_Shdr *>(info.elf_base + info.ehdr->e_shoff);
    info.phdr = reinterpret_cast<Elf32_Phdr *>(info.elf_base + info.ehdr->e_phoff);

    info.shstr = NULL;

    Elf32_Phdr *dynamic = NULL;
    Elf32_Word size = 0;

    getSegmentInfo(info, PT_DYNAMIC, &dynamic, &size, &info.dyn);
    if(!dynamic){
        LOGE("[-] could't find PT_DYNAMIC segment");
        exit(-1);
    }
    info.dynsz = size / sizeof(Elf32_Dyn);

    Elf32_Dyn *dyn = info.dyn;
    for(int i=0; i<info.dynsz; i++, dyn++){

        switch(dyn->d_tag){

        case DT_SYMTAB:
            info.sym = reinterpret_cast<Elf32_Sym *>(info.elf_base + dyn->d_un.d_ptr);
            break;

        case DT_STRTAB:
            info.symstr = reinterpret_cast<const char *>(info.elf_base + dyn->d_un.d_ptr);
            break;

        case DT_REL:
            info.reldyn = reinterpret_cast<Elf32_Rel *>(info.elf_base + dyn->d_un.d_ptr);
            break;

        case DT_RELSZ:
            info.reldynsz = dyn->d_un.d_val / sizeof(Elf32_Rel);
            break;

        case DT_JMPREL:
            info.relplt = reinterpret_cast<Elf32_Rel *>(info.elf_base + dyn->d_un.d_ptr);
            break;

        case DT_PLTRELSZ:
            info.relpltsz = dyn->d_un.d_val / sizeof(Elf32_Rel);
            break;

        case DT_HASH:
            uint32_t *rawdata = reinterpret_cast<uint32_t *>(info.elf_base + dyn->d_un.d_ptr);
            info.nbucket = rawdata[0];
            info.nchain = rawdata[1];
            info.bucket = rawdata + 2;
            info.chain = info.bucket + info.nbucket;
            break;
        }
    }

    //because .dynsym is next to .dynstr, so we can caculate the symsz simply
    info.symsz = ((uint32_t)info.symstr - (uint32_t)info.sym)/sizeof(Elf32_Sym);
}


然而,有一个值我无法通过通过PT_DYNAMIC段得到的,那就是.dynsym的项数。我最后通过变通的方法得到的。由于.dynsym和.dynstr两个节区是相邻的。因此它们两个地址相减。就可以得到的.dynsym总长度。再除了sizeof(Elf32_Sym)就可以得到.dynsym的项数,假设你有更好的方法。请跟我说说。

ELF Hook

有了上面的介绍之后,写个ELF Hook就很easy的,我把关键代码贴出来:

#define R_ARM_ABS32 0x02
#define R_ARM_GLOB_DAT 0x15
#define R_ARM_JUMP_SLOT 0x16

int elfHook(const char *soname, const char *symbol, void *replace_func, void **old_func){
    assert(old_func);
    assert(replace_func);
    assert(symbol);

    ElfHandle* handle = openElfBySoname(soname);
    ElfInfo info;

    getElfInfoBySegmentView(info, handle);

    Elf32_Sym *sym = NULL;
    int symidx = 0;

    findSymByName(info, symbol, &sym, &symidx);

    if(!sym){
        LOGE("[-] Could not find symbol %s", symbol);
        goto fails;
    }else{
        LOGI("[+] sym %p, symidx %d.", sym, symidx);
    }

    for (int i = 0; i < info.relpltsz; i++) {
        Elf32_Rel& rel = info.relplt[i];
        if (ELF32_R_SYM(rel.r_info) == symidx && ELF32_R_TYPE(rel.r_info) == R_ARM_JUMP_SLOT) {

            void *addr = (void *) (info.elf_base + rel.r_offset);
            if (replaceFunc(addr, replace_func, old_func))
                goto fails;

            //only once
            break;
        }
    }

    for (int i = 0; i < info.reldynsz; i++) {
        Elf32_Rel& rel = info.reldyn[i];
        if (ELF32_R_SYM(rel.r_info) == symidx &&
                (ELF32_R_TYPE(rel.r_info) == R_ARM_ABS32
                        || ELF32_R_TYPE(rel.r_info) == R_ARM_GLOB_DAT)) {

            void *addr          = (void *) (info.elf_base + rel.r_offset);
            if (replaceFunc(addr, replace_func, old_func))
                goto fails;
        }
    }

    fails:
    closeElfBySoname(handle);
    return 0;
}


最后是測试的代码:

typedef int (*strlen_fun)(const char *);
strlen_fun old_strlen = NULL;

size_t my_strlen(const char *str){
    LOGI("strlen was called.");
    int len = old_strlen(str);
    return len * 2;
}


strlen_fun global_strlen1 = (strlen_fun)strlen;
strlen_fun global_strlen2 = (strlen_fun)strlen;

#define SHOW(x) LOGI("%s is %d", #x, x)

extern "C" jint Java_com_example_allhookinone_HookUtils_elfhook(JNIEnv *env, jobject thiz){
    const char *str = "helloworld";

    strlen_fun local_strlen1 = (strlen_fun)strlen;
    strlen_fun local_strlen2 = (strlen_fun)strlen;

    int len0 = global_strlen1(str);
    int len1 = global_strlen2(str);
    int len2 = local_strlen1(str);
    int len3 = local_strlen2(str);
    int len4 = strlen(str);
    int len5 = strlen(str);

    LOGI("hook before:");
    SHOW(len0);
    SHOW(len1);
    SHOW(len2);
    SHOW(len3);
    SHOW(len4);
    SHOW(len5);

    elfHook("libonehook.so", "strlen", (void *)my_strlen, (void **)&old_strlen);

    len0 = global_strlen1(str);
    len1 = global_strlen2(str);
    len2 = local_strlen1(str);
    len3 = local_strlen2(str);
    len4 = strlen(str);
    len5 = strlen(str);

    LOGI("hook after:");
    SHOW(len0);
    SHOW(len1);
    SHOW(len2);
    SHOW(len3);
    SHOW(len4);
    SHOW(len5);

    return 0;
}


结果可以发现,从打印,local_strlen1和local_strlen2上述正。不受影响。但是,假设函数被再次调用,进入力,原因不解决。

测试结果没有取得,让你试试吧。

GitHup地址

完整的代码。见https://github.com/boyliang/AllHookInOne.git

你可能感兴趣的:(android)