Spark0.9.0机器学习包MLlib-Optimization代码阅读

       基于Spark的一个生态产品--MLlib,实现了经典的机器学算法,源码分8个文件夹,classification文件夹下面包含NB、LR、SVM的实现,clustering文件夹下面包含K均值的实现,linalg文件夹下面包含SVD的实现(稀疏矩阵的表示),recommendation文件夹下面包含als,矩阵分解实现,regression文件夹下面实现了线性回归,L2的线性回归,L1的线性回归,Util文件夹下面包含了可以为各个算法生成toy-data的文件,另外还有一个DataValidators.scala文件,api文件夹下面是PythonMLLibAPI.scala 文件,最后一个也是本文将要讲的optimization--优化算法模块包含Gradient. scala,GradientDescent.scala,Optimizer.scala,Updater.scala4个文件,作为一个scala语言的新手,如文章标题写的一样,只是对四个文件源码进行了粗读,力求搞清楚MLlib的优化算法模块的代码架构是什么样的,实现了哪些算法以及采用了什么并行策略等,关于源码中用到的scala语言特性,等熟悉这门语言后,还需要反复阅读代码。走过、路过的朋友发现文中的错误,也烦请指正,谢谢,下面是阅读过程中的一些理解(注:由于源代码有非常多的注释,为节省空间,本文有选择性的删除了,详细注释请参考源码,另外貌似博客园没有scala语言的插入模板)。
 
Gradient.scala文件
第一部分,定义了Gradient 的抽象类
 
 1 package org.apache.spark.mllib.optimization  2 

 3 import org.jblas.DoubleMatrix  4 

 5 /**

 6 

 7  * Class used to compute the gradient for a loss function, given a single data point.  8 

 9  */

10 

11   abstract class Gradient extends Serializable { 12 

13   /**

14 

15  * Compute the gradient and loss given the features of a single data point. 16 

17  * @param data - Feature values for one data point. Column matrix of size dx1 18 

19  * where d is the number of features. 20 

21  * @param label - Label for this data item. 22 

23  * @param weights - Column matrix containing weights for every feature. 24 

25  * @return A tuple of 2 elements. The first element is a column matrix containing the computed 26 

27  * gradient and the second element is the loss computed at this data point. 28 

29    */

30 

31  def compute(data: DoubleMatrix, label: Double, weights: DoubleMatrix): 32 

33  (DoubleMatrix, Double) 34 

35 }

       可以从上面的注释上看出compute的参数data是一个样本的特征(d*1维度),label就是一个double型变量,该数据点(a single data point)的标签,weights就是特征变量的回归系数也是d*1维度,该函数返回2个东西,第1个是该样本点下计算的梯度,第2个该样本点下的损失loss

 
第二部分, Gradient 对 三种不同损失函数(Log-Loss, LeastSquares -Loss,Hinge-Loss)的派生类
 
针对log-loss损失函数,重写抽象类的compute函数
 1 /**

 2 

 3  * Compute gradient and loss for a logistic loss function, as used in binary classification.  4 

 5  * See also the documentation for the precise formulation.  6 

 7  */

 8 

 9 class LogisticGradient extends Gradient { 10 

11  override def compute(data: DoubleMatrix, label: Double, weights: DoubleMatrix): 12 

13       (DoubleMatrix, Double) = { 14 

15     val margin: Double = -1.0 * data.dot(weights) 16 

17     val gradientMultiplier = (1.0 / (1.0 + math.exp(margin))) - label 18 

19     val gradient = data.mul(gradientMultiplier) 20 

21     val loss =

22 

23       if (label > 0) { 24 

25         math.log(1 + math.exp(margin)) 26 

27       } else { 28 

29         math.log(1 + math.exp(margin)) - margin 30 

31  } 32 

33  (gradient, loss) 34 

35  } 36 

37 }

       我们知道对于log-loss的表达式loss=-[y*log(g(wx))+(1-y)*log(1-g(wx))], 其中g(wx)=1/(1+exp(-wx)),二分类(0,1),对这个loss进行求w偏导,d(loss)/d(w)=[g(wx)-y] * x  (为书写方便,用d代表偏导的符号了),具体的表达式推导请移步http://www.cnblogs.com/kobedeshow/p/3340240.html

       结合上面代码,margin得到-wx(不明白为什么取margin的名字,函数间隔?但是函数间隔也是y*g(wx)呀),接着 gradientMultiplier是求上面梯度公式的左边, gradient  就是该点的梯度,最后求loss,当label=1的时候,上面的log-loss表达式=-[1*log(g(wx))]=-log[1/(1+exp(-wx)]=log(1+exp(margin)),当 label=0 的时候, 上面的log-loss表达式=-[log(1-g(wx))]=-[log(1-1/(1+exp(-wx)))]=-log[exp(-wc)/(1+exp(-wx))]=log(1+exp(-wx))-wc= log(1+exp(margin)) -margin
 
针对l eastsquares -loss损失函数,重写抽象类的compute函数
 1 /**

 2 

 3  * Compute gradient and loss for a Least-squared loss function, as used in linear regression.  4 

 5  * This is correct for the averaged least squares loss function (mean squared error)  6 

 7  * L = 1/n ||A weights-y||^2  8 

 9  * See also the documentation for the precise formulation. 10 

11  */

12 

13 class LeastSquaresGradient extends Gradient { 14 

15  override def compute(data: DoubleMatrix, label: Double, weights: DoubleMatrix): 16 

17       (DoubleMatrix, Double) = { 18 

19     val diff: Double = data.dot(weights) - label 20 

21     val loss = diff * diff 22 

23     val gradient = data.mul(2.0 * diff) 24 

25  (gradient, loss) 27  } 28 

29 }

 

         l eastsquares -loss的表达式 如注释所示: L = 1/n ||A weights-y||^2,这里n=1,文中代码的变量diff,就是f(wx)-y的值,损失loss=diff*diff,梯度就是data.mul(2.0 * diff),注意.mul是 DoubleMatrix( jblas )的一个方法,是元素跟矩阵的点乘,.mull是矩阵跟矩阵的乘法,.dot是向量的内积
 
针对hinge -loss损失函数,重写抽象类的compute函数
 1 /**

 2 

 3  * Compute gradient and loss for a Hinge loss function, as used in SVM binary classification.  4 

 5  * See also the documentation for the precise formulation.  6 

 7  * NOTE: This assumes that the labels are {0,1}  8 

 9  */

10 

11 class HingeGradient extends Gradient { 12 

13  override def compute(data: DoubleMatrix, label: Double, weights: DoubleMatrix): 14 

15       (DoubleMatrix, Double) = { 16 

17     val dotProduct = data.dot(weights) 18 

19     // Our loss function with {0, 1} labels is max(0, 1 - (2y – 1) (f_w(x))) 20 

21     // Therefore the gradient is -(2y - 1)*x

22 

23     val labelScaled = 2 * label - 1.0

24 

25     if (1.0 > labelScaled * dotProduct) { 26 

27       (data.mul(-labelScaled), 1.0 - labelScaled * dotProduct) 28 

29     } else { 30 

31       (DoubleMatrix.zeros(1, weights.length), 0.0) 32 

33  } 35  } 37 }

       hinge-loss的二分类(-1,1)的表达式是max(0,1- y * f(x)),代码中映射到(0,1),变成max(0, 1 - (2y – 1) (f(x))),这时候当样本错分的时候(也就是labelScaled * dotProduct<1),梯度是data.mul(-labelScaled),损失是1-labelScaled * dotProduct

 
Updater.scala文件
第一部分,定义了 Updater  的抽象类
 1 /**

 2 

 3  * Class used to perform steps (weight update) using Gradient Descent methods.  4 

 5  * For general minimization problems, or for regularized problems of the form  6 

 7  * min L(w) + regParam * R(w),  8 

 9  * the compute function performs the actual update step, when given some 10 

11  * (e.g. stochastic) gradient direction for the loss L(w), 12 

13  * and a desired step-size (learning rate). 14 

15  * 16 

17  * The updater is responsible to also perform the update coming from the 18 

19  * regularization term R(w) (if any regularization is used). 20 

21  */

22 

23 abstract class Updater extends Serializable { 24 

25   /**

26 

27  * Compute an updated value for weights given the gradient, stepSize, iteration number and 28 

29  * regularization parameter. Also returns the regularization value regParam * R(w) 30 

31  * computed using the *updated* weights. 32 

33  * @param weightsOld - Column matrix of size dx1 where d is the number of features. 34 

35  * @param gradient - Column matrix of size dx1 where d is the number of features. 36 

37  * @param stepSize - step size across iterations 38 

39  * @param iter - Iteration number 40 

41  * @param regParam - Regularization parameter 42 

43  * 44 

45  * @return A tuple of 2 elements. The first element is a column matrix containing updated weights, 46 

47  * and the second element is the regularization value computed using updated weights. 48 

49    */

50 

51  def compute(weightsOld: DoubleMatrix, gradient: DoubleMatrix, stepSize: Double, iter: Int, 52 

53  regParam: Double): (DoubleMatrix, Double) 54 

55 }


      compute的参数weightsOld是更新前的变量回归系数(d*1维)gradient是根据指定的损失函数计算出的当前梯度stepSize 是步长也就是学习速率,iter 迭代次数,regParam 是正则参数值,该函数返回2个东西,第1个是更新后的回归系数,第2个是更新后的regParam * R(w) 值。

 
第二部分, Updater  三种不同正则方式(无正则,L1,L2)的派生类
 
针对 无正则  ,重写抽象类的compute函数
 1 /**

 2 

 3  * A simple updater for gradient descent *without* any regularization.  4 

 5  * Uses a step-size decreasing with the square root of the number of iterations.  6 

 7  */

 8 

 9 class SimpleUpdater extends Updater { 10 

11  override def compute(weightsOld: DoubleMatrix, gradient: DoubleMatrix, 12 

13       stepSize: Double, iter: Int, regParam: Double): (DoubleMatrix, Double) = { 14 

15     val thisIterStepSize = stepSize / math.sqrt(iter) 16 

17     val step = gradient.mul(thisIterStepSize) 18 

19     (weightsOld.sub(step), 0) 20 

21  } 22 

23 }


      对于梯度下降算法,w -= a*gradient,a是学习率对应代码里面的thisIterStepSize(相当于一开始步长很大,随迭代次数,增加而减小),式子中的a*gradient对应着step,最后,weightsNew=weightsOld.sub(step)

 
针对 L1正则  ,重写抽象类的compute函数
 1 /**

 2 

 3  * Updater for L1 regularized problems.  4 

 5  * R(w) = ||w||_1  6 

 7  * Uses a step-size decreasing with the square root of the number of iterations.  8 

 9  * Instead of subgradient of the regularizer, the proximal operator for the 10 

11  * L1 regularization is applied after the gradient step. This is known to 12 

13  * result in better sparsity of the intermediate solution. 14 

15  * The corresponding proximal operator for the L1 norm is the soft-thresholding 16 

17  * function. That is, each weight component is shrunk towards 0 by shrinkageVal. 18 

19  * If w > shrinkageVal, set weight component to w-shrinkageVal. 20 

21  * If w < -shrinkageVal, set weight component to w+shrinkageVal. 22 

23  * If -shrinkageVal < w < shrinkageVal, set weight component to 0. 24 

25  * Equivalently, set weight component to signum(w) * max(0.0, abs(w) - shrinkageVal) 26 

27  */

28 

29 class L1Updater extends Updater { 30 

31  override def compute(weightsOld: DoubleMatrix, gradient: DoubleMatrix, 32 

33       stepSize: Double, iter: Int, regParam: Double): (DoubleMatrix, Double) = { 34 

35     val thisIterStepSize = stepSize / math.sqrt(iter) 36 

37     val step = gradient.mul(thisIterStepSize) 38 

39     // Take gradient step

40 

41     val newWeights = weightsOld.sub(step) 42 

43     // Apply proximal operator (soft thresholding)

44 

45     val shrinkageVal = regParam * thisIterStepSize 46 

47     (0 until newWeights.length).foreach { i =>

48 

49       val wi = newWeights.get(i) 50 

51       newWeights.put(i, signum(wi) * max(0.0, abs(wi) - shrinkageVal)) 52 

53  } 54 

55     (newWeights, newWeights.norm1 * regParam) 56 

57  } 58 

59 }


       加了正则项之后,前几步都一样,然后关键是对后面的处理(后面的理论暂时还不太理解,可以参考http://freemind.pluskid.org/machine-learning/sparsity-and-some-basics-of-l1-regularization/),还是说代码步骤吧,变量shrinkageVal =regParam * thisIterStepSize(注意:要*thisIterStepSize,因为w -= a*gradient  里面的gradient包括L(w)还包括正则的R(w)),然后对加正则前更新的newWeights,上遍历每一个元素,直接对该元素赋值newWeights.put(i, signum(wi) * max(0.0, abs(wi) - shrinkageVal)),对应着代码注释的红体部分。

 
针对 L2正则  ,重写抽象类的compute函数
 1 /**

 2 

 3  * Updater for L2 regularized problems.  4 

 5  * R(w) = 1/2 ||w||^2  6 

 7  * Uses a step-size decreasing with the square root of the number of iterations.  8 

 9  */

10 

11 class SquaredL2Updater extends Updater { 12 

13  override def compute(weightsOld: DoubleMatrix, gradient: DoubleMatrix, 14 

15       stepSize: Double, iter: Int, regParam: Double): (DoubleMatrix, Double) = { 16 

17     val thisIterStepSize = stepSize / math.sqrt(iter) 18 

19     val step = gradient.mul(thisIterStepSize) 20 

21     // add up both updates from the gradient of the loss (= step) as well as 22 

23     // the gradient of the regularizer (= regParam * weightsOld)

24 

25     val newWeights = weightsOld.mul(1.0 - thisIterStepSize * regParam).sub(step) 26 

27     (newWeights, 0.5 * pow(newWeights.norm2, 2.0) * regParam) 28 

29  } 30 

31 }

       L2正则项加入后,损失函数变为loss1=loss+1/2 *regParam* ||w||^2,按梯度下降的更新公式:w=w-学习速率 * (d(loss1)/d(w));后面的d(loss1)=d(loss1)/d(w) + d(1/2*regParam*||w||^2) / d(w)了,那么更新公式变成了w=w-学习速率*d(loss)/d(w)-学习速率*d(1/2*regParam*||w|| ^2)/d(w)=(1-学习速率*regParam)*w-学习速率*d(loss)/d(w),这个也就对应了第25行代码的意思

 
GradientDescent.scala文件
第一部分,定义了GradientDescent 类
 1 package org.apache.spark.mllib.optimization  2 

 3 import org.apache.spark.Logging  4 

 5 import org.apache.spark.rdd.RDD  6 

 7 import org.jblas.DoubleMatrix  8 

 9 import scala.collection.mutable.ArrayBuffer  10 

 11 /**

 12 

 13  * Class used to solve an optimization problem using Gradient Descent.  14 

 15  * @param gradient Gradient function to be used.  16 

 17  * @param updater Updater to be used to update weights after every iteration.  18 

 19  */

 20 

 21 class GradientDescent(var gradient: Gradient, var updater: Updater)  22 

 23   extends Optimizer with Logging  24 

 25 {  26 

 27   private var stepSize: Double = 1.0

 28 

 29   private var numIterations: Int = 100

 30 

 31   private var regParam: Double = 0.0

 32 

 33   private var miniBatchFraction: Double = 1.0

 34 

 35   /**

 36 

 37  * Set the initial step size of SGD for the first step. Default 1.0.  38 

 39  * In subsequent steps, the step size will decrease with stepSize/sqrt(t)  40 

 41    */

 42 

 43   def setStepSize(step: Double): this.type = {  44 

 45     this.stepSize = step  46 

 47     this

 48 

 49  }  50 

 51   /**

 52 

 53  * Set fraction of data to be used for each SGD iteration.  54 

 55  * Default 1.0 (corresponding to deterministic/classical gradient descent)  56 

 57    */

 58 

 59   def setMiniBatchFraction(fraction: Double): this.type = {  60 

 61     this.miniBatchFraction = fraction  62 

 63     this

 64 

 65  }  66 

 67   /**

 68 

 69  * Set the number of iterations for SGD. Default 100.  70 

 71    */

 72 

 73   def setNumIterations(iters: Int): this.type = {  74 

 75     this.numIterations = iters  76 

 77     this

 78 

 79  }  80 

 81   /**

 82 

 83  * Set the regularization parameter. Default 0.0.  84 

 85    */

 86 

 87   def setRegParam(regParam: Double): this.type = {  88 

 89     this.regParam = regParam  90 

 91     this

 92 

 93  }  94 

 95   /**

 96 

 97  * Set the gradient function (of the loss function of one single data example)  98 

 99  * to be used for SGD. 100 

101    */

102 

103   def setGradient(gradient: Gradient): this.type = { 104 

105     this.gradient = gradient 106 

107     this

108 

109  } 110 

111   /**

112 

113  * Set the updater function to actually perform a gradient step in a given direction. 114 

115  * The updater is responsible to perform the update from the regularization term as well, 116 

117  * and therefore determines what kind or regularization is used, if any. 118 

119    */

120 

121   def setUpdater(updater: Updater): this.type = { 122 

123     this.updater = updater 124 

125     this

126 

127  } 128 

129  def optimize(data: RDD[(Double, Array[Double])], initialWeights: Array[Double]) 130 

131     : Array[Double] = { 132 

133     val (weights, stochasticLossHistory) = GradientDescent.runMiniBatchSGD( 134 

135  data, 136 

137  gradient, 138 

139  updater, 140 

141  stepSize, 142 

143  numIterations, 144 

145  regParam, 146 

147  miniBatchFraction, 148 

149  initialWeights) 150 

151  weights 152 

153  } 154 

155 }

       该类的输入有2个参数,第一个是前面都是gradient对应了用户需要选哪个损失函数计算梯度,第二个updater 对应了用户选择哪一种正则方式,程序开头都设置了stepSize,numIterations,regParam,miniBatchFraction的默认值最后一个函数optimize,输入RDD数据,跟初始的回归系数weight,返回weights权重

 
第二部分,定义了object GradientDescent 
 1 // Top-level method to run gradient descent.

 2 

 3 object GradientDescent extends Logging {  4 

 5   /**

 6 

 7  * Run stochastic gradient descent (SGD) in parallel using mini batches.  8 

 9  * In each iteration, we sample a subset (fraction miniBatchFraction) of the total data  10 

 11  * in order to compute a gradient estimate.  12 

 13  * Sampling, and averaging the subgradients over this subset is performed using one standard  14 

 15  * spark map-reduce in each iteration.  16 

 17  *  18 

 19  * @param data - Input data for SGD. RDD of the set of data examples, each of  20 

 21  * the form (label, [feature values]).  22 

 23  * @param gradient - Gradient object (used to compute the gradient of the loss function of  24 

 25  * one single data example)  26 

 27  * @param updater - Updater function to actually perform a gradient step in a given direction.  28 

 29  * @param stepSize - initial step size for the first step  30 

 31  * @param numIterations - number of iterations that SGD should be run.  32 

 33  * @param regParam - regularization parameter  34 

 35  * @param miniBatchFraction - fraction of the input data set that should be used for  36 

 37  * one iteration of SGD. Default value 1.0.  38 

 39  *  40 

 41  * @return A tuple containing two elements. The first element is a column matrix containing  42 

 43  * weights for every feature, and the second element is an array containing the  44 

 45  * stochastic loss computed for every iteration.  46 

 47    */

 48 

 49  def runMiniBatchSGD(  50 

 51  data: RDD[(Double, Array[Double])],  52 

 53  gradient: Gradient,  54 

 55  updater: Updater,  56 

 57  stepSize: Double,  58 

 59  numIterations: Int,  60 

 61  regParam: Double,  62 

 63  miniBatchFraction: Double,  64 

 65     initialWeights: Array[Double]) : (Array[Double], Array[Double]) = {  66 

 67     val stochasticLossHistory = new ArrayBuffer[Double](numIterations)  68 

 69     val nexamples: Long = data.count()  70 

 71     val miniBatchSize = nexamples * miniBatchFraction  72 

 73     // Initialize weights as a column vector

 74 

 75     var weights = new DoubleMatrix(initialWeights.length, 1, initialWeights:_*)  76 

 77     var regVal = 0.0

 78 

 79     for (i <- 1 to numIterations) {  80 

 81       // Sample a subset (fraction miniBatchFraction) of the total data  82 

 83       // compute and sum up the subgradients on this subset (this is one map-reduce)

 84 

 85       val (gradientSum, lossSum) = data.sample(false, miniBatchFraction, 42 + i).map {  86 

 87         case (y, features) =>

 88 

 89           val featuresCol = new DoubleMatrix(features.length, 1, features:_*)  90 

 91           val (grad, loss) = gradient.compute(featuresCol, y, weights)  92 

 93  (grad, loss)  94 

 95       }.reduce((a, b) => (a._1.addi(b._1), a._2 + b._2))  96 

 97       /**

 98 

 99  * NOTE(Xinghao): lossSum is computed using the weights from the previous iteration 100 

101  * and regVal is the regularization value computed in the previous iteration as well. 102 

103        */

104 

105       stochasticLossHistory.append(lossSum / miniBatchSize + regVal) 106 

107       val update = updater.compute( 108 

109  weights, gradientSum.div(miniBatchSize), stepSize, i, regParam) 110 

111       weights = update._1 112 

113       regVal = update._2 114 

115  } 116 

117     logInfo("GradientDescent.runMiniBatchSGD finished. Last 10 stochastic losses %s".format( 118 

119       stochasticLossHistory.takeRight(10).mkString(", "))) 120 

121  (weights.toArray, stochasticLossHistory.toArray) 122 

123  } 124 

125 }

       该object进行了整个的优化过程,输出是回归系数跟每次迭代的loss,这里实现的是minibatch-sgd的并行,前面的var weights = new DoubleMatrix(initialWeights.length, 1, initialWeights:_*),这个操作是把array型的搞成矩阵型的d*1维矩阵。关键代码for (i <- 1 to numIterations) 里面的,首先data是spark的RDD数据类型,data.sample方法第一个参数指是否又放回的抽样,第二个是抽样比例,第三个是随机种子,data.sample返回抽样后的RDD,然后RDD.map,RDD.reduce操作就是一个完整的map-reduce操作。接着,把得到的gradientSum除以miniBatchSize,扔到updater里面去更新梯度,关于minibatch-sgd的并行策略可以参考我之前的文章《常见数据挖掘算法的Map-Reduce策略(2)》里面的algorithm3。

你可能感兴趣的:(spark)