The Little Elephant likes permutations. This time he has a permutation A[1], A[2], ..., A[N] of numbers 1, 2, ...,N.
He calls a permutation A good, if the number of its inversions is equal to the number of its local inversions. The number of inversions is equal to the number of pairs of integers (i; j) such that 1 ≤ i < j ≤ N and A[i] > A[j], and the number of local inversions is the number of integers i such that 1 ≤ i < N and A[i] > A[i+1].
The Little Elephant has several such permutations. Help him to find for each permutation whether it is good or not. Print YES for a corresponding test case if it is good and NO otherwise.
The first line of the input contains a single integer T, the number of test cases. T test cases follow. The first line of each test case contains a single integer N, the size of a permutation. The next line contains N space separated integers A[1], A[2], ..., A[N].
For each test case output a single line containing the answer for the corresponding test case. It should beYES if the corresponding permutation is good and NO otherwise.
1 ≤ T ≤ 474
1 ≤ N ≤ 100
It is guaranteed that the sequence A[1], A[2], ..., A[N] is a permutation of numbers 1, 2, ..., N.
Input: 4 1 1 2 2 1 3 3 2 1 4 1 3 2 4 Output: YES YES NO YES
总结一下有下面关系:
全局逆序数 == 起泡排序交换数据的交换次数
本题数据量小,能够使用暴力法计算。
可是这样时间效率是O(N*N),要想减少到O(nlgn)那么就要使用merger sort。
以下一个类中暴力法和merge sort方法都包含了。
#pragma once #include <stdio.h> #include <stdlib.h> class LittleElephantAndPermutations { int localInverse(const int *A, const int n) { int ans = 0; for (int i = 1; i < n; i++) { if (A[i-1] > A[i]) ans++; } return ans; } int globalInverse(const int *A, const int n) { int ans = 0; for (int i = 0; i < n; i++) { for (int j = i+1; j < n; j++) { if (A[i] > A[j]) ans++; } } return ans; } int *mergeArr(int *left, int L, int *right, int R, int &c) { int *lr = new int[L+R]; int i = 0, j = 0, k = 0; while (i < L && j < R) { if (left[i] <= right[j]) { lr[k++] = left[i++]; } else { lr[k++] = right[j++]; c += L-i; } } while (i < L) { lr[k++] = left[i++]; } while (j < R) { lr[k++] = right[j++]; } return lr; } int biGlobalInverse(int *&A, const int n) { if (n <= 1) return 0; int mid = (n-1) >> 1;//记得n-1 int *left = new int[n]; int *right = new int[n]; int L = 0, R = 0; for ( ; L <= mid; L++) { left[L] = A[L]; } for (int i = mid+1; i < n; i++, R++) { right[R] = A[i]; } delete [] A; int c1 = biGlobalInverse(left, L); int c2 = biGlobalInverse(right, R); int c = 0; A = mergeArr(left, L, right, R, c); delete left; delete right; return c1+c2+c; } public: void run() { int T = 0, N = 0; scanf("%d", &T); while (T--) { scanf("%d", &N); int *A = new int[N]; for (int i = 0; i < N; i++) { scanf("%d", &A[i]); } int loc = localInverse(A, N); int glo = biGlobalInverse(A, N); if (loc == glo) puts("YES"); else puts("NO"); } } }; int littleElephantAndPermutations() { LittleElephantAndPermutations le; le.run(); return 0; }