上个月(11 月 13 日),83 岁的柯达公司退休工程师 布赖斯·拜尔(Bryce Bayer)去世。
一家国内 杂志邀请我写纪念文章,回顾他对数码摄影的巨大贡献。
我看了一些材料,觉得这个题材很有意思,涉及数码相机的成像原理,使我对数字图像技术有了新的认识。但是,由于体例限制,杂志不允许我插入彩图。
下面,我把我的那篇文章配上图片,解释彩色数码照片是怎么拍出来的。
1.
为了更好地理解原理,让我们从照片的起源讲起。1825 年,法国人 涅普斯(Joseph Nicéphore Nièpce),拍出历史上第一张照片。
2.
他采用的感光剂是 氯化银(silver chloride)。当光线照射氯化银,后者会分解成纯银和氯气,纯银在空气中很快氧化变成黑色。因此,底片颜色越深代表光线越强,颜色越浅代表光线越弱。黑白照片就是这样拍出来。
3.
19 世纪中期,人们发现,人眼的圆锥细胞对三种颜色----红、绿、蓝----特别敏感。伟大的英国物理学家麦克斯韦因此假设,红绿蓝作为基色,可以拍出彩色照片。
4.
1861 年,在麦克斯韦的指导下,人类的第一张彩色照片诞生了。
采用的方法是在镜头前,分别用红丝带、绿丝带、蓝丝带过滤光线,曝光形成三张底片,然后用三部放映机向同一处投影这三张底片,每部放映机的镜头前都拧上对应颜色的镜头,它们的合成效果就是一张彩照。
5.
真正意义上的彩色胶卷,1933 年诞生于柯达公司,底片之上依次有三个感光层,分别对红、绿、蓝三种颜色进行曝光,最后叠加形成一张彩色底片。
6.
二战后,计算机诞生,科学家发现图像可以用数字形式表示。如果将光信号转变成电信号,就可以直接拍出数码照片。这意味着,照相机不再需要胶卷,而是需要一个 图像传感器(image sensor)。
7.
图像传感器将光线转化成电流,光线越亮,电流的数值就越大;光线越暗,电流的数值就越小。所以,如果用 0 到 255 的范围,表示光线的亮度,最亮的光线是白光,数值是十六进制的 FF,最暗的光线是黑光(没有光),数值是十六进制的 00。
8.
图像传感器的表面,分成若干个捕捉点,每个点都会产生一个数值,表示该点感受到的光线亮度,这就叫做"像素"。像素越多,图像细节就越丰富。如果一台照机的像素是 1600x1200,就说明图像传感器横向有 1600 个捕捉点,纵向有 1200 个,合计 192 万个。
9.
但是,图像传感器有一个很严重的缺陷:它只能感受光的强弱,无法感受光的波长。由于光的颜色由波长决定,所以图像传播器无法记录颜色,也就是说,它只能拍黑白照片,这肯定是不能接受的。
10.
一种解决方案是照相机内置三个图像传感器,分别记录红、绿、蓝三种颜色,然后再将这三个值合并。这种方法能产生最准确的颜色信息,但是成本太高,无法投入实用。
11.
1974 年,柯达公司的工程师布赖斯·拜尔提出了一个全新方案,只用一块图像传感器,就解决了颜色的识别。他的做法是在图像传感器前面,设置一个 滤光层(Color filter array),上面布满了滤光点,与下层的像素一一对应。也就是说,如果传感器是 1600x1200 像素,那么它的上层就有 1600x1200 个滤光点。
12.
每个滤光点只能通过红、绿、蓝之中的一种颜色,这意味着在它下层的像素点只可能有四种颜色:红、绿、蓝、黑(表示没有任何光通过)。
13.
不同颜色的滤光点的排列是有规律的:每个绿点的四周,分布着 2 个红点、2 个蓝点、4 个绿点。这意味着,整体上,绿点的数量是其他两种颜色点的两倍。这是因为研究显示人眼对绿色最敏感,所以滤光层的绿点最多。
14.
接下来的问题就是,如果一个像素只可能有四种颜色,那么怎么能拍出彩色照片呢?这就是布赖斯·拜尔聪明的地方,前面说了,每个滤光点周围有规律地分布其他颜色的滤光点,那么就有可能结合它们的值,判断出光线本来的颜色。以黄光为例,它由红光和绿光混合而成,那么通过滤光层以后,红点和绿点下面的像素都会有值,但是蓝点下面的像素没有值,因此看一个像素周围的颜色分布----有红色和绿色,但是没有蓝色----就可以推测出来这个像素点的本来颜色应该是黄色。
15.
这种计算颜色的方法,就叫做 "去马赛克"(demosaicing)。上图的下半部分是图像传感器生成的"马赛克"图像,所有的像素只有红、绿、蓝、黑四种颜色;上半部分是"去马赛克"后的效果,这是用算法处理的结果。
16.
虽然,每个像素的颜色都是算出来的,并不是真正的值,但是由于计算的结果相当准确,因此这种做法得到广泛应用。目前,绝大部分的数码相机都采用它,来生成彩色数码照片。高级的数码相机,还提供未经算法处理的原始马赛克图像,这就是 raw 格式(raw image format)。
为了纪念发明者布赖斯·拜尔,它被称作"拜尔模式"或 "拜尔滤光法" (Bayer filter)。