下面我们来逐一分析一下该程序与原始版本的不同之处。
在最初版的wordCount里,程序是在main函数里直接runJob的,而增强版的main函数里通过调用ToolRunner.run()函数启动程序。
该函数的原型是public static int run(Configuration conf, Tool tool, String[] args),其功能是将args作为参数,conf作为配置运行tool。
Tool 是Map/Reduce工具或应用的标准。ToolRunner用来运行实现了Tool接口的类,它与GenericOptionsParser合作解析Hadoop的命令行参数。
Hadoop命令行的常用选项有:
-conf -D -fs -jt
应用程序应该只处理其定制参数,把标准命令行选项通过 ToolRunner.run(Tool, String[]) 委托给 GenericOptionsParser处理。
增强版的WordCount类继承了Configured类并实现了Tool接口,因此第95行中的第二个参数就是WordCount类。这也是典 型的实现Tool接口的写法。Configured类提供了88行的函数getConf(),该函数功能是获得对象自身的配置。Tool接口主要实现一个 run函数,然后通过ToolRunner.run调用执行。
在run函数中,第83行,通过DistributedCache将参数文件分发到HDFS缓存文件。
DistributedCache 是Map/Reduce框架提供的功能,能够缓存应用程序所需的文件 (包括文本,档案文件,jar文件等)。应用程序在JobConf中通过url(hdfs://)指定需要被缓存的文件。 DistributedCache假定由hdfs://格式url指定的文件已经在 FileSystem上了。Map-Redcue框架在作业所有任务执行之前会把必要的文件拷贝到slave节点上。DistributedCache运 行高效是因为每个作业的文件只拷贝一次并且为那些没有文档的slave节点缓存文档。
DistributedCache 根据缓存文档修改的时间戳进行追踪。 在作业执行期间,当前应用程序或者外部程序不能修改缓存文件。
用户可以通过设置mapred.cache.{files|archives}来分发文件。 如果要分发多个文件,可以使用逗号分隔文件所在路径。也可以利用API来设置该属性: DistributedCache.addCacheFile(URI,conf)/ DistributedCache.addCacheArchive(URI,conf) and DistributedCache.setCacheFiles(URIs,conf)/ DistributedCache.setCacheArchives(URIs,conf) 其中URI的形式是 hdfs://host:port/absolute-path#link-name 在Streaming程序中,可以通过命令行选项 -cacheFile/-cacheArchive 分发文件。
在第25行获得缓存的参数文件。
在第12行用到了Counters, Counters 是多个由Map/Reduce框架或者应用程序定义的全局计数器。 每一个Counter可以是任何一种 Enum类型。同一特定Enum类型的Counter可以汇集到一个组,其类型为Counters.Group。应用程序可以定义任意(Enum类型)的 Counters并且可以通过 map 或者 reduce方法中的 Reporter.incrCounter(Enum, long)或者 Reporter.incrCounter(String, String, long) 更新。之后框架会汇总这些全局counters。
在第54行用到了Reporter,Reporter是用于Map/Reduce应用程序报告进度,设定应用级别的状态消息, 更新Counters(计数器)的机制。
Mapper和Reducer的实现可以利用Reporter 来报告进度,或者仅是表明自己运行正常。在那种应用程序需要花很长时间处理个别键值对的场景中,这种机制是很关键的,因为框架可能会以为这个任务超时了, 从而将它强行杀死。另一个避免这种情况发生的方式是,将配置参数mapred.task.timeout设置为一个足够高的值(或者干脆设置为零,则没有 超时限制了)。第57行就用reporter来设置了程序运行的状态。
第20行标记是否忽略大小写,该参数并没有在程序中设置,而是留给运行程序的用户了。
另外,在第50行,采用了StringTokenizer进行单词的分割,记得当时做项目的时候就查看过API,StringTokenizer是不推荐使用的,所以我们都是采用split来实现。
下面是增强版WordCount的运行样例及结果
输入样例: $ bin/hadoop dfs -ls /usr/joe/wordcount/input/ /usr/joe/wordcount/input/file01 /usr/joe/wordcount/input/file02 $ bin/hadoop dfs -cat /usr/joe/wordcount/input/file01 Hello World, Bye World! $ bin/hadoop dfs -cat /usr/joe/wordcount/input/file02 Hello Hadoop, Goodbye to hadoop. 运行程序: $ bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount /usr/joe/wordcount/input /usr/joe/wordcount/output 输出: $ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000 Bye 1 Goodbye 1 Hadoop, 1 Hello 2 World! 1 World, 1 hadoop. 1 to 1 现在通过DistributedCache插入一个模式文件,文件中保存了要被忽略的单词模式。 $ hadoop dfs -cat /user/joe/wordcount/patterns.txt . , ! to 再运行一次,这次使用更多的选项: $ bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount -Dwordcount.case.sensitive=true /usr/joe/wordcount/input /usr/joe/wordcount/output -skip /user/joe/wordcount/patterns.txt 应该得到这样的输出: $ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000 Bye 1 Goodbye 1 Hadoop 1 Hello 2 World 2 hadoop 1 再运行一次,这一次关闭大小写敏感性(case-sensitivity): $ bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount -Dwordcount.case.sensitive=false /usr/joe/wordcount/input /usr/joe/wordcount/output -skip /user/joe/wordcount/patterns.txt 输出: $ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000 bye 1 goodbye 1 hadoop 2 hello 2 world 2
最后,比较囧的是,我竟然是第一次看到第60行的这种用法,虽然一眼就能判断出这是foreach操作,但是之前一直不知道Java还支持这种使用,查了一下,是1.5加入的特性。