通用线程: 学习 Linux LVM

通用线程: 学习 Linux LVM

“逻辑卷管理”为存储器管理带来的魔力

Daniel Robbins ( [email protected]), 总裁兼 CEO, Gentoo Technologies, Inc.

简介: 在本文中,Daniel 向您介绍了 Linux LVM(逻辑卷管理)背后的概念,并告诉您如何将最新的内核补丁和工具安装到您的系统上。LVM 可以让您在除机器上的物理存储资源以外创建逻辑卷。不过,与物理卷不同,逻辑卷可以在系统仍处于运行状态时扩充和缩减,这样就为 Linux 系统管理员提供了他们梦寐以求的存储器灵活性。

在这一系列中,我要向您介绍如何安装和使用新的内置在 Linux 2.4 内核中的“逻辑卷管理”支持。如果您以前从未使用过任何形式的 LVM ,那么您得好好学一学;它是一种非常棒的技术。 在我们真正设置和运行 LVM 之前,我要解释一下它究竟是什么以及它是如何工作的。然后,我们准备对 LVM 做一些测试来充分了解它。

LVM 介绍

如果您象我一样,那么您对 UNIX 和 Linux 的体验是从 PC 平台,而不是从大型的商业 UNIX 服务器和工作站上开始的。在基本 PC 上,我们总是不得不对硬盘驱动器执行分区。使用 PC 的人通常相当了解 fdisk 这样的在硬盘上创建和删除主要分区和扩展分区的工具。硬盘分区是一种令人厌烦,但公认是使操作系统设置和运行进程不可或缺的一部分。

因为要做好工作,确实需要精确地估计每个分区需要多少空间,所以硬盘驱动器分区可能是非常烦人的事。如果估计得不准确,Linux 系统很可能会顾此失彼 -- 为解决这个问题,您甚至可能需要执行整个系统备份、将硬盘清除干净,然后将所有数据恢复到新的(可能比原来好一些)分区布局中。讨厌!这些就是系统管理员在一开始就尽力避免的情况。

虽然分区曾一度是静态存储器的天下,但值得庆幸的是,我们现在有许多 PC 重新分区工具(PowerQuest 的 Partition Magic 产品就是最流行的一种)。这些工具可以让您用一个特殊磁盘来引导系统,并可以动态地重新调整分区和文件系统的大小。重新引导后,您就拥有了重新调整过大小的新分区,这样就有望将您从存储器危境中解脱出来。这些重新调整分区大小的工具很有效,并从某种程度上解决了一些存储器管理问题。但它们是不是就完美了呢?不一定。

象 Partition Magic 这样的工具对于工作站来说非常有效,但对服务器来说就不合适了。首先,它们需要重新引导系统。 而这正是大多数系统管理员尽量避免的。如果在每次需要调整存储器(例如,如果每周存储器调整都需要做很大调整)时不能重新引导机器怎么办?如果需要扩充文件系统使它能跨越多个硬盘驱动器会发生什么,或者如果在允许 Apache 继续提供 Web 页面的同时需要动态扩充或缩减卷的存储容量,您该怎么做?在一个高度可用的动态环境中,基本的分区大小调整器无法满足这些要求。对于这样一些和其它一些情况,“逻辑卷管理”是一种非常出色(如果不是最完美)的解决方案。

回页首

进入 LVM

现在,让我们看看 LVM 是如何解决这些问题的。我们执行下面的三步骤过程来创建 LVM 逻辑卷。首先,我们需要选择用于 LVM 的物理存储器资源。这些通常是标准分区,但也可以是我们已创建的 Linux Software RAID 卷。如果使用 LVM 术语,这些存储器资源称为“物理卷”。设置 LVM 的第一步是正确初始化这些分区以使它们可以被 LVM 系统识别。如果添加物理分区,它还包括设置正确的分区类型,以及运行 pvcreate 命令。

在初始化 LVM 使用的一个或多个物理卷后,可以继续进行第二步 -- 创建卷组。您可以把卷组看作是由一个或多个物理卷所组成的存储器池。 在 LVM 运行时,我们可以向卷组添加物理卷,甚至从中除去它们。不过,我们不能直接在卷组上安装或创建文件系统。而是告诉 LVM 使用我们的卷组存储器池创建一个或多个“逻辑卷”:


在物理卷上创建卷组
 

创建 LVM 逻辑卷非常容易,而且一旦创建它以后,我们就可以把文件系统放在它上面、安装它,然后开始使用卷来存储文件。使用 "lvcreate" 命令来创建逻辑卷,指定新卷的名称、所希望的卷的大小,以及希望这个特定逻辑卷所属的卷组。 然后,LVM 系统从我们指定的卷组中分配存储量来创建准备使用的新卷。创建新卷后,可以将 ext2 或 ReiserFS 文件系统放在上面、安装它,然后照我们喜欢的方式使用它。


从现有卷组创建两个逻辑卷
通用线程: 学习 Linux LVM 

回页首

范围

在幕后,LVM 系统以大小相等的“块”(称为“范围”)为单位分配存储量。我们可以指定在创建卷组时使用的特定的范围大小。范围的大小缺省为 4Mb,这对于大多数情况来说相当理想。LVM 的一个好处是在已经安装了逻辑卷并在使用逻辑卷的情况下,可以动态地改变逻辑卷使用的范围的物理存储位置(换句话说,就是存储它们所在的磁盘)。LVM 系统确保逻辑卷在管理员物理地改变存储位置的同时能够继续正常操作。

当然,因为所有事物都是在大小相等的范围之上创建的,所以要为已存在的逻辑卷分配一些额外的范围实际上很容易 -- 换句话说,动态“增长”卷:


从卷组添加额外的范围,扩展逻辑卷的大小
 

一旦扩充了逻辑卷,接下来就可以扩充 ext2 或 ReiserFS 文件系统来利用这一新的磁盘空间。如果使用例如 resize_reiserfs 这样的程序,也可以 在已安装和正使用卷时扩充文件系统!真正令人称奇的是 -- 使用 LVM 和联机文件系统扩充实用程序,可以在改变存储器配置时不再需要重新引导系统,甚至不需要降低到运行级别 1。

唯一需要关闭系统的情况是在需要添加新的物理磁盘时。添加了新磁盘后,可以将这些新的物理卷添加到卷组中来创建新的范围补给。

回页首

设置 LVM

好,让我们开始安装 LVM。LVM 由两部分组成:内核部分和一套用户空间工具。为了开始,先跳到主要 LVM 页面(请参阅本文稍后部分的 参考资料)并下载可以找到的最新版本的 LVM tar 文件(当前是 lvm_0.9.1_beta3.tar.gz)。LVM tar 文件包含了所有用户空间工具以及一组内核补丁程序。这正是令人感兴趣的地方。

如果已经安装了 2.4 系列内核,则系统上已有 LVM 支持,如果没有,很简单,只需要重新编译内核来启用 LVM 支持即可。不过,您可能不希望使用自带的(或发行版提供的)2.4 内核所包括的 LVM 支持。如果希望使用最新的 LVM 版本,要将 LVM tar 文件中的补丁程序应用到当前的 2.4 内核源码树。以下是执行方法。

为了开始,进入内核源码目录 (/usr/src/linux) 并创建一个称为 "extras" 的目录。然后进入该目录并抽取 LVM tar 文件:

# cd /usr/src/linux
# mkdir extras
# cd extras
# tar xzvf /path/to/location/of/lvm_0.9.1_beta3.tar.gz

执行完这一步后,您会注意到在 extras 中有一个称之为 "LVM" 的目录,它包含了另一个根据您刚刚解包的 LVM 版本命名的目录。进入这两个目录找到 LVM 源码:

清单 1:找到 LVM 源码

您将看到几个文本文件、脚本和源目录。您会在 "INSTALL" 文件中找到安装指令;我将指导您完成这一过程。首先,我们希望运行配置脚本,如下:

# ./configure --prefix=/ --mandir=/usr/man

回页首

修补

执行完这条命令后,将创建并配置 Makefile,以在 /sbin 中安装所有 LVM 工具,在 /usr/man 中安装帮助页面。如果您的帮助页面位于 /usr/share/man 中(按照 FHS 2.1),则对上述路径作相应的调整。如果内核源码不在 /usr/src/linux 中,还需要将 "--with-kernel_dir=/path/to/usr/src/linux" 选项添加到一行中。配置脚本完成后,我们就可以准备安装这些工具并生成当前内核的补丁了。让我们首先对内核加以修补。进入 PATCHES 目录:

# cd PATCHES

现在输入 "make"。makefile 将生成专用于特定 2.4 系列内核源码的补丁:

# make

补丁名为 lvm-[lvmversion]-[kernelversion].patch。例如,因为我使用的是版本 0.9.1_beta3 的 LVM 和内核 2.4.0-ac11,所以补丁名为 lvm-0.9.1_beta3-2.4.0-ac11.patch。您可以在当前目录中找到它。现在该应用补丁了。要应用补丁,需要将目录切换到内核源码所在的位置,然后使用 patch 命令,如清单 2 所示:

清单 2:patch 命令

虽然 LVM INSTALL 文档并没有提到,但我通常将 "-l" 选项传递给 patch。该选项让补丁程序补偿空白中的任何变化(例如细微的缩排变化),这些变化一般会造成补丁的某些部分失败。如果上述命令完成时没有任何带有 "FAILED" 的行,那么就可以准备安装用户磁盘空间工具了。如果不是这样,您需要审视 /usr/src/linux 目录来查找 ..rej 文件,然后使用文本编辑器手工将被拒绝的部分插入到源码中 -- 真麻烦!不过,在大多数情况下,应用补丁都很顺利,您可以迅速使用它。

回页首

配置、编译和安装

好,现在有了一个经过修补的内核,因此它具有最新可用的 LVM 代码。现在需要配置内核来启用 LVM 支持。我建议您直接将 LVM 支持编译到内核中而不是将它配置成作为一个模块编译。启动您喜爱的 Linux 内核配置方法:

# cd /usr/src/linux
# make menuconfig

您在 "Multi-device support (RAID and LVM)" 部分中可以找到 LVM 选项。一旦启用了第一个选项:

[*] Multiple devices driver support (RAID and LVM) 

....您将看到以下选项,您也应该启用它们:

<*>   Logical volume manager (LVM) support

根据您使用的 LVM 版本,可能还有其它一些希望启用的与 LVM 相关的选项。完成后,保存内核配置,并执行标准内核编译例程,然后重新引导。 恭喜 -- 您现已启用了内核 LVM 支持;现在,我们需要编译和安装用户磁盘空间工具。这一步很简单:

# cd /usr/src/linux/extras/LVM/0.9.1_beta3
# make
# make install

另外还有一步,它是可选的。如果您要做的不仅是测试 LVM,还需要将以下几行添加到启动 rc 脚本中:

/sbin/vgscan
/sbin/vgchange -a y

这些行将浏览所有可用的卷组并激活它们。然后,将以下这行添加到关机 rc 脚本中,并确保它在卸装了所有文件系统后执行:

/sbin/vgchange -a n

如果只是测试 LVM,可以跳过这些步骤。只是要记住,在每次重新引导后,在逻辑卷可以使用前,需要以 root 输入 "vgscan" 和 "vgchange -a y"。

以上就是这篇文章的内容。在下一篇文章中,我将介绍如何创建您自己的逻辑卷,以及如何发挥 LVM 的威力。到时候再见!



在 我前一篇 LVM 文章 中,我解释了 LVM 背后的概念。现在该是发挥 LVM 作用的时候了。在本文中,我将在官方 Gentoo Linux web/cvs/email 服务器 -- cvs.gentoo.org -- 上设置 LVM。尽管 cvs.gentoo.org 只有一个硬盘,但灵活性很强的 LVM 仍然令人难以置信地提供了比标准静态分区方法好得多的改进。我将为您介绍 LVM 转换过程的的所有步骤,这样,如果您有兴趣,可以在自己的机器上执行类似的转换。

在开始之前有一个告诫。因为实现 LVM 是对系统进行的一项重要的变动(包括创建新分区和其它一些潜在的冒险操作),所以在开始这一过程之前备份整个系统 不失为 一个好主意。如果您不想进行备份,我希望您能使用一台没有什么重要数据的测试机器 :) 应该说我在转换到 LVM 时并没有遇到任何问题,但最好做好准备以防万一。

那么,让我们继续。在开始转换过程之前,我对 cvs.gentoo.org 进行了升级,让它使用下列软件包。在我执行 LVM 转换的时候,这些是当时的最新版本(请参阅本文稍后部分的 参考资料):

  • Linux 内核 2.4.1-ac19
  • LVM 0.9.1_beta5
  • reiserfs-utils 3.6.25

现在轮到硬盘驱动器了。cvs.gentoo.org 有一个不错的新的 IBM 45 GB 硬盘驱动器;不过,当我在 cvs 上安装 Gentoo Linux 时,我只对驱动器中的 10 GB 进行了分区,而将余下的 35 GB 留作“将来的分区”使用。这些是在不使用 LVM 时耍的一点小计谋 -- 将部分驱动器保留不分区是一种为今后的扩充作准备的简单但有效的方式。不过,如果使用 LVM,会有更好的方法。

空间问题

在过去的几个星期中,我注意到我的根 ReiserFS 分区在被缓慢地填满,这可以从下面的 "df" 输出中看出:

Filesystem           1k-blocks      Used Available Use% Mounted on
/dev/hda3              9765200   6989312   2775888  72% /
tmpfs                   269052         0    269052   0% /dev/shm

现在,72% 被占满的根分区并不构成什么危机,但也决不是一种良好的状况。ReiserFS 和许多其它文件系统一样,随着它越来越满而开始逐渐减慢速度,在根文件系统被完全填满、文件系统的性能遭到重创之前,这只是时间问题。

我决定在硬盘驱动器的结尾处使用 LVM,从 35 GB 的当前未分区空间中创建新逻辑卷来解决这一问题。然后,我会在这个卷上创建一个文件系统,并将 /dev/hda3 的大部分内容转移到其中。

如果您考虑在自己的机器上进行类似的转换,首先需要做的就是在根文件系统上找一个合适的部分转移到逻辑卷上。对我来说,选择很容易 -- 我的 /home 树占用了大约 5.7 GB。通过将 /home 转移到它自己的 LVM 逻辑卷,我的根文件系统处于大约 20% 容量的位置。因为大多数新数据被添加到 /home,所以我的根文件系统很可能也停留在大约 20% 容量的位置 -- 一种非常健康的状态。

回页首

解决方案的开始

在开始转换之前,首先在硬盘驱动器的结尾处对未使用的空间进行分区。我使用 cfdisk 创建了一个 35 GB 的分区 (/dev/hda5),然后将分区的分区类型设置成 "8E"(正规 LVM 分区类型)。在这一更改后,我进行了重新引导以强制重新读取分区表。在重新引导后,我的分区表如下:

# sfdisk -l
Disk /dev/hda: 89355 cylinders, 16 heads, 63 sectors/track
Units = cylinders of 516096 bytes, blocks of 1024 bytes, counting from 0
   Device Boot Start     End   #cyls   #blocks   Id  System
/dev/hda1   *      0+    247     248-   124960+  83  Linux
/dev/hda2        248     743     496    249984   82  Linux swap
/dev/hda3        744   20119   19376   9765504   83  Linux
/dev/hda4      20120   89354   69235  34894440    5  Extended
/dev/hda5      20120+  89354   69235- 34894408+  8e  Linux LVM

既然有了空的 35 GB 的分区,我就准备为 LVM 初始化它。以下是过程 -- 首先,我将 35 GB 初始化成 物理卷;然后,使用这个物理卷创建一个 卷组 ,最后,在卷组上分配一些范围,创建将包含新文件系统并存放当前 /home 中所有文件的 逻辑卷

为开始这个过程,我使用 pvcreate 命令将 /dev/hda5 初始化成物理卷:

# pvcreate /dev/hda5
pvcreate -- physical volume "/dev/hda5" successfully created

pvcreate 在 /dev/hda5 上设置一个特殊的“记帐”区域,称作 VGDA(“卷组描述符区域”)。LVM 使用该区域来记录物理范围是如何分配的,以及其它一些操作。

下一步是创建卷组并向该卷组添加 /dev/hda5。卷组将充当范围池(许多存储块)。创建卷组之后,创建所需数量的逻辑卷。我决定将卷组称为 "main":

# vgcreate main /dev/hda5
vgcreate -- INFO: using default physical extent size 4 MB
vgcreate -- INFO: maximum logical volume size is 255.99 Gigabyte
vgcreate -- doing automatic backup of volume group "main"
vgcreate -- volume group "main" successfully created and activated   

vgcreate 命令执行几个操作。除了创建 "main" 卷组以外,它还设置 /dev/hda5,使它使用 4 MB 的范围,4 GB 是缺省范围大小。这意味着在卷组上创建的所有逻辑卷都可以以 4 MB 为增量单位来进行扩充或缩减。

由于内核限制的原因,范围大小决定了逻辑卷的最大大小。您可以从上面的输出中看出,4 MB 的范围大小决定了逻辑卷大小限制为 256 GB,如果您向卷组添加几个高容量驱动器,这是很容易达到的逻辑卷组大小。如果每一个卷最后都大于 256 GB,我建议您在运行 vgcreate 时指定更大一些的范围大小。范围的大小可以是从 8 KB 到 512 MB 之间的任何值,并且必须总是 2 的倍数。通过将范围大小增加到 4 MB 以上,最大的物理卷大小将相应地增加到最大为 1 Petabyte(尽管当今现实世界中,x86 系统上的大小限制是 2 Terabytes)。例如,如果希望使用 32 MB 的范围创建卷组,我会输入:

# vgcreate -s 32M main /dev/hda5

32 MB 是个合适的范围大小,因为 32 MB 的颗粒度仍然便于管理,并将引导的最大逻辑卷大小增加到 2 TB。创建卷组之后,可以通过输入 "vgdisplay" 来查看其信息:

# vgdisplay
--- Volume group ---
VG Name               main
VG Access             read/write
VG Status             available/resizable
VG #                  0
MAX LV                256
Cur LV                0
Open LV               0
MAX LV Size           255.99 GB
Max PV                256
Cur PV                1
Act PV                1
VG Size               33.28 GB
PE Size               4 MB
Total PE              8519
Alloc PE / Size       0 / 0
Free  PE / Size       8519 / 33.28 GB
VG UUID               2qC2H2-iA8s-qW6F-cwXx-JVIh-I6VC-VVCGmn

既然有了自己的卷组,我准备创建逻辑卷。我决定在最初时将它的大小设置为 8 GB,并称它作 "lv_home":

# lvcreate -L8G -nlv_home main
lvcreate -- doing automatic backup of "main"
lvcreate -- logical volume "/dev/main/lv_home" successfully created 

然后,在逻辑卷上创建文件系统:

# mkreiserfs /dev/main/lv_home
 
  
  <----------- MKREISERFSv2 ----------->
   
   Block size 4096 bytes
   Block count 2097152
   Used blocks 8275
           Journal - 8192 blocks (18-8209), journal header is in block 8210
                   Bitmaps: 17, 32768, 65536, 98304, 131072, 163840, 
                   196608, 229376, 262144, 294912, 327680, 360448, 
                   393216, 425984, 458752, 491520, 524288, 557056, 
                   589824, 622592, 655360, 688128, 720896, 753664,
                   786432, 819200, 851968, 884736, 917504, 950272,
                   983040, 1015808, 1048576, 1081344, 1114112,
                   1146880, 1179648, 1212416, 1245184, 1277952,
                   1310720, 1343488, 1376256, 1409024, 1441792,
                   1474560, 1507328, 1540096, 1572864, 1605632,
                   1638400, 1671168, 1703936, 1736704, 1769472,
                   1802240, 1835008, 1867776, 1900544, 1933312,
                   1966080, 1998848, 2031616, 2064384
    Root block 8211
Hash function "r5"
ATTENTION: ALL DATA WILL BE LOST ON '/dev/main/lv_home'! (y/n)y
journal size 8192 (from 18)
Initializing journal - 0%....20%....40%....60%....80%....100%
Syncing..done.

既然创建了文件系统,我就可以在 /mnt/newhome 上安装它:

# mkdir /mnt/newhome
# mount /dev/main/lv_home /mnt/newhome
# df
Filesystem           1k-blocks      Used Available Use% Mounted on
/dev/hda3              9765200   6989840   2775360  72% /
tmpfs                   291388         0    291388   0% /dev/shm
/dev/main/lv_home      8388348     32840   8355508   1% /mnt/newhome

您可以从上面看出,我几乎准备复制 /home 中的所有数据。 在开始之前,我把系统降低到运行级别 1 以确保在复制 /home 中的文件时,没有用户或进程能够访问或修改它们:

# init 1

然后,开始复制文件:

# cp -avx /home/* /mnt/newhome

复制操作需要大约 10 分钟的时间完成。然后,我将原始 /home 备份成 /home.old,这只是为在复制过程中有任何错误而准备的。创建一个新的安装点,然后在 /home 上重新安装新 home:

# cd /
# mv home home.old
# mkdir home
# umount /mnt/newhome
# mount /dev/main/lv_home /home

然后,应该设置服务器以使我的新 /home 分区可以在每次启动机器时使用。首先修改 /etc/fstab 以使它包括新的 /home 项:

# /etc/fstab: static file system information.
#
# fs                mountpoint       type         opts          dump/pass
/dev/hda3           /                reiserfs     defaults      1 1
/dev/main/lv_home   /home            reiserfs     defaults      2 2
/dev/hda2           none             swap         sw            0 0
/dev/hda1           /boot            reiserfs     noauto        0 0
/dev/cdrom          /mnt/cdrom       iso9660      noauto,ro     0 0
proc                /proc            proc         defaults      0 0
none                /dev/pts         devpts       mode=620      0 0
tmpfs               /dev/shm         tmpfs        defaults      0 0

然后,我对初始化脚本进行了一些小小改动。我修改了 "checkroot" 启动脚本,使以下命令可以在根分区重新安装读/写后立即运行:

/sbin/vgscan
/sbin/vgchange -a y

接下来,我修改了在关机时运行的文件系统卸装脚本,使以下命令在卸装了所有文件系统 立即运行:

/sbin/vgchange -a n

完成了这些步骤后,我重新引导了机器,让我高兴的是一切都工作正常。在接下去的一天左右的时间里完全没有问题,随后我删除了 /home.old 以释放根文件系统上的一些空间。太棒了!到 LVM 的转换成功了。

回页首

LVM 的优点

虽然到 LVM 的转换有些痛苦,但一旦转换完成之后,管理文件系统就变得非常简单。例如,我决定重新调整新的 /home 逻辑卷大小,向文件系统结尾添加大约 2 GB 的空间。首先,我向 "lv_home" 逻辑卷添加了额外的容量,然后使用 resize_reiserfs 实用程序来扩充文件系统,使它可以使用额外的容量。以下是执行所有这些操作的两个命令:

# lvextend -L+2G /dev/main/lv_home
# resize_reiserfs -f /dev/main/lv_home

在大约一秒钟的时间里,我将 /home 文件系统扩大了 2 GB;令人惊奇的是,我不需要重新引导、降低到运行级别 1,甚至不需要卸装 /home 来执行大小调整。一切都照常工作。是不是很了不起?下面是我的文件系统的当前状态:

# df
Filesystem           1k-blocks      Used Available Use% Mounted on
/dev/hda3              9765200   1413340   8351860  15% /
/dev/main/lv_home     10485436   5609836   4875600  54% /home

您可以看出 LVM 的确可以让管理员的工作轻松许多。我希望在今后能将根文件系统的其它部分转移到 LVM,最终甚至将我的根文件系统转换成 LVM 逻辑卷。下面的参考资料可以帮助您了解有关 LVM 的更多知识。


参考资料

  • 您可以参阅本文在 developerWorks 全球站点上的 英文原文. 

  • 有关 LVM 的概念和如何在系统上安装最新的内核补丁和工具的建议,请参阅 developerWorks上 Daniel 的前一篇文章, 学习 LVM,第 1 部分。 

  • 从 Sistina Software 下载 LVM tar 文件。 

  • 现在 Sistina 有一个非常棒的 LVM HOWTO (它与简单的 HOWTO 相比,更接近于一个完整描述的手册)。 

  • 请务必仔细查看 Linux LVM FAQ。 

  • 等不及的读者可以查看 Heinz Mauelshagen 的 LVM 快速入门,它包含了有关如何设置卷组和逻辑卷的更多示例。 

  • 另外还有一个有意思的 HOWTO,告诉您 如何在逻辑卷上设置根文件系统 。LVM-0.9.1_final 问世后,我会尝试执行这一操作。 

  • Andreas Dilger 参与了 Linux LVM 项目,他有一个看上去不错的 联机。 

  • ReiserFS 是一种非常好的文件系统(特别在与 LVM 结合使用时)。如果使用的是 ReiserFS,需要获取 reiserfs-utils tar 文件,它包含了一个称为 "reiserfs_resize" 的程序 -- 允许对 ReiserFS 文件系统联机调整大小。 

  • 有关设置 Linux 软件 RAID 卷的详细信息,请参阅 Daniel 在 developerWorks上有关软件 RAID 系列的 第 1 部分和 第 2 部分。 

  • 对于复习进修者,请参阅 developerWorks Linux 内核编译教程。 

关于作者

作者

Daniel Bobbins 居住在美国新墨西哥州的阿尔布开克,他是 Gentoo Technologies, Inc. 的总裁兼 CEO、 Gentoo Linux (一种用于 PC 的高级 Linux)和 Portage 系统(用于 Linux 的下一代移植系统)的主创人。他还是几本 Macmillan 出版的书籍 Caldera OpenLinux Unleashed、 SuSE Linux Unleashed 和 Samba Unleashed 的投稿人。Daniel 自二年级起就与计算机结下不解之缘,那时他首先接触的是 Logo 程序语言,并沉溺于 Pac-Man 游戏中。这也许就是他至今仍担任 SONY Electronic Publishing/Psygnosis 的首席图形设计师的原因所在。Daniel 喜欢与妻子 Mary 和新出生的女儿 Hadassah 一起共度时光。可通过 [email protected] 与 Daniel 联系。

你可能感兴趣的:(lvm)