Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
great
/ \
gr eat
/ \ / \
g r e at
/ \
a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node "gr" and swap its two children, it produces a scrambled string "rgeat".
rgeat
/ \
rg eat
/ \ / \
r g e at
/ \
a t
We say that "rgeat" is a scrambled string of "great".
Similarly, if we continue to swap the children of nodes "eat" and "at", it produces a scrambled string "rgtae".
rgtae
/ \
rg tae
/ \ / \
r g ta e
/ \
t a
We say that "rgtae" is a scrambled string of "great".
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
[balabala] 暴力解决枚举出s1的全部scramble string, 存在大量重复计算;分段比较s1,s2也存在大量重复计算,比如s1=abcdef, s2=dcabef, isScramble(bcdef, cabef) 就会重复计算isScramble(cdef, abef)。使用动态规划,保存s1, s2每个位置处各种长度对应的字串的匹配情况,dp[l][i][j]表示s1[i, i+l) 和 s2[j, j+l)是否是scramble关系。
// timeout
public boolean isScramble1(String s1, String s2) {
if (s1 == null || s2 == null || s1.length() != s2.length())
return false;
if (s1.equals(s2))
return true;
int lengthS1 = s1.length();
for (int i = 1; i < lengthS1; i++) {
boolean cond1 = isScramble(s1.substring(0, i), s2.substring(0, i))
&& isScramble(s1.substring(i, lengthS1), s2.substring(i, lengthS1));
boolean cond2 = isScramble(s1.substring(0, i), s2.substring(lengthS1 - i, lengthS1))
&& isScramble(s1.substring(i, lengthS1), s2.substring(0, lengthS1 - i));
if (cond1 || cond2)
return true;
}
return false;
}
public boolean isScramble(String s1, String s2) {
if (s1 == null || s2 == null || s1.length() != s2.length())
return false;
if (s1.equals(s2))
return true;
int length = s1.length();
boolean[][][] dp = new boolean[length + 1][length][length];
for (int l = 1; l <= length; l++) {
for (int i = 0; i <= length - l; i++) {
for (int j = 0; j <= length - l; j++) {
if (l == 1) {
dp[1][i][j] = s1.charAt(i) == s2.charAt(j);
} else {
for (int k = 1; k < l; k++) {
dp[l][i][j] = (dp[k][i][j] && dp[l - k][i + k][j + k])
|| (dp[k][i][j + l - k] && dp[l - k][i + k][j]);
if (dp[l][i][j])
break;
}
}
}
}
}
return dp[length][0][0];
}