zookeeper学习之三(Curator客户端)

Curator框架是最好用,最流行的zookeeper的客户端。

它有以下三个优点

1.提供了一套非常友好的操作API;

2. 提供一些高级特性(包括但不仅限于前篇文章中提到的)的封装

3.易测试

maven依赖如下

<dependency>
	<groupId>org.apache.curator</groupId>
	<artifactId>curator-recipes</artifactId>
	<version>2.5.0</version>
</dependency>


按照官方给出的文档和包结构,可以轻松的看出Curator功能分两大类,一是对zookeeper的一些基本命令的封装,比如增删改查。是他的framework模块,一个是他的高级特性,即recipes模块。

 

一、framework模块

Curator提供了一套Fluent风格的操作API。这在很多脚本类语言里比较流行。

 比如他创建client的代码是这样

CuratorFramework client = builder.connectString("192.168.11.56:2180")
		.sessionTimeoutMs(30000)
		.connectionTimeoutMs(30000)
		.canBeReadOnly(false)
		.retryPolicy(new ExponentialBackoffRetry(1000, Integer.MAX_VALUE))
		.namespace(namespace)
		.defaultData(null)
		.build();
client.start();

 一路点到底,这就是所谓的Fluent风格。 

 我们再看增删改查的

public class CrudExamples {
	private static CuratorFramework client = ClientFactory.newClient();
	private static final String PATH = "/crud";

	public static void main(String[] args) {
		try {
			client.start();

			client.create().forPath(PATH, "I love messi".getBytes());

			byte[] bs = client.getData().forPath(PATH);
			System.out.println("新建的节点,data为:" + new String(bs));

			client.setData().forPath(PATH, "I love football".getBytes());

			// 由于是在background模式下获取的data,此时的bs可能为null
			byte[] bs2 = client.getData().watched().inBackground().forPath(PATH);
			System.out.println("修改后的data为" + new String(bs2 != null ? bs2 : new byte[0]));

			client.delete().forPath(PATH);
			Stat stat = client.checkExists().forPath(PATH);

			// Stat就是对zonde所有属性的一个映射, stat=null表示节点不存在!
			System.out.println(stat);
		} catch (Exception e) {
			e.printStackTrace();
		} finally {
			CloseableUtils.closeQuietly(client);
		}
	}
}

 常用接口有

create()增

delete(): 删

checkExists(): 判断是否存在

setData():  改

getData(): 查

所有这些方法都以forpath()结尾,辅以watch(监听),withMode(指定模式),和inBackground(后台运行)等方法来使用。

 

 此外,Curator还支持事务,一组crud操作同生同灭。代码如下

/**
 * 事务操作
 * 
 * @author shencl
 */
public class TransactionExamples {
	private static CuratorFramework client = ClientFactory.newClient();

	public static void main(String[] args) {
		try {
			client.start();
			// 开启事务
			CuratorTransaction transaction = client.inTransaction();

			Collection<CuratorTransactionResult> results = transaction.create()
					.forPath("/a/path", "some data".getBytes()).and().setData()
					.forPath("/another/path", "other data".getBytes()).and().delete().forPath("/yet/another/path")
					.and().commit();

			for (CuratorTransactionResult result : results) {
				System.out.println(result.getForPath() + " - " + result.getType());
			}
		} catch (Exception e) {
			e.printStackTrace();
		} finally {
			// 释放客户端连接
			CloseableUtils.closeQuietly(client);
		}

	}
}




 这段的代码的运行结果,由于最后一步delete的节点不存在,所以整个事务commit失败。失败的原因会放在Collection<CuratorTransactionResult>中,非常友好。

 

好了framework部分的内容就这么多,是不是特别简单呢。下面就来看看recipes包的内容吧。。

 

Recipes部分提供的功能官网列的很详细,点击这里。注意文章第一段:Curator宣称,Recipes模块实现了除二阶段提交之外的所有zookeeper特性。

 

二、Recipes模块

 

主要有

Elections(选举),Locks(锁),Barriers(关卡),Atomic(原子量),Caches,Queues等

 

1、 Elections

选举主要依赖于LeaderSelector和LeaderLatch2个类。前者是所有存活的客户端不间断的轮流做Leader,大同社会。后者是一旦选举出Leader,除非有客户端挂掉重新触发选举,否则不会交出领导权。某党?

 

这两者在实现上是可以切换的,直接上代码,怎么切换注释里有。由于篇幅所限,这里仅贴出基于LeaderSelector的选举,更多代码见附件

/**
 * 本类基于leaderSelector实现,所有存活的client会公平的轮流做leader
 * 如果不想频繁的变化Leader,需要在takeLeadership方法里阻塞leader的变更! 或者使用 {@link}
 * LeaderLatchClient
 */
public class LeaderSelectorClient extends LeaderSelectorListenerAdapter implements Closeable {
	private final String name;
	private final LeaderSelector leaderSelector;
	private final String PATH = "/leaderselector";

	public LeaderSelectorClient(CuratorFramework client, String name) {
		this.name = name;
		leaderSelector = new LeaderSelector(client, PATH, this);
		leaderSelector.autoRequeue();
	}

	public void start() throws IOException {
		leaderSelector.start();
	}

	@Override
	public void close() throws IOException {
		leaderSelector.close();
	}

	/**
	 * client成为leader后,会调用此方法
	 */
	@Override
	public void takeLeadership(CuratorFramework client) throws Exception {
		int waitSeconds = (int) (5 * Math.random()) + 1;
		System.out.println(name + "是当前的leader");
		try {
			Thread.sleep(TimeUnit.SECONDS.toMillis(waitSeconds));
		} catch (InterruptedException e) {
			Thread.currentThread().interrupt();
		} finally {
			System.out.println(name + " 让出领导权\n");
		}
	}




/**
 * leader选举
 * 
 * @author shencl
 */
public class LeaderSelectorExample {

	public static void main(String[] args) {

		List<CuratorFramework> clients = Lists.newArrayList();
		List<LeaderSelectorClient> examples = Lists.newArrayList();
		try {
			for (int i = 0; i < 10; i++) {
				CuratorFramework client = ClientFactory.newClient();
				LeaderSelectorClient example = new LeaderSelectorClient(client, "Client #" + i);
				clients.add(client);
				examples.add(example);

				client.start();
				example.start();
			}

            System.out.println("----------先观察一会选举的结果-----------");
			Thread.sleep(10000);

			System.out.println("----------关闭前5个客户端,再观察选举的结果-----------");
			for (int i = 0; i < 5; i++) {
				clients.get(i).close();
			}

			// 这里有个小技巧,让main程序一直监听控制台输入,异步的代码就可以一直在执行。不同于while(ture)的是,按回车或esc可退出
			new BufferedReader(new InputStreamReader(System.in)).readLine();

		} catch (Exception e) {
			e.printStackTrace();
		} finally {
			for (LeaderSelectorClient exampleClient : examples) {
				CloseableUtils.closeQuietly(exampleClient);
			}
			for (CuratorFramework client : clients) {
				CloseableUtils.closeQuietly(client);
			}
		}
	}
}




2、locks

curator lock相关的实现在recipes.locks包里。顶级接口都是InterProcessLock。我们直接看最有代表性的InterProcessReadWriteLock 进程内部读写锁(可重入读写锁)。什么叫可重入,什么叫读写锁。不清楚的先查好资料吧。总之读写锁一定是成对出现的。    简易传送门

 

我们先定义两个任务,可并行的执行的,和互斥执行的。

/**
 * 并行任务
 * 
 * @author shencl
 */
public class ParallelJob implements Runnable {

	private final String name;

	private final InterProcessLock lock;

	// 锁等待时间
	private final int wait_time = 5;

	ParallelJob(String name, InterProcessLock lock) {
		this.name = name;
		this.lock = lock;
	}

	@Override
	public void run() {
		try {
			doWork();
		} catch (Exception e) {
			// ingore;
		}
	}

	public void doWork() throws Exception {
		try {
			if (!lock.acquire(wait_time, TimeUnit.SECONDS)) {
				System.err.println(name + "等待" + wait_time + "秒,仍未能获取到lock,准备放弃。");
			}
			// 模拟job执行时间0-4000毫秒
			int exeTime = new Random().nextInt(4000);
			System.out.println(name + "开始执行,预计执行时间= " + exeTime + "毫秒----------");
			Thread.sleep(exeTime);
		} catch (Exception e) {
			e.printStackTrace();
		} finally {
			lock.release();
		}
	}
}




/**
 * 互斥任务
 * 
 * @author shencl
 */
public class MutexJob implements Runnable {

	private final String name;

	private final InterProcessLock lock;

	// 锁等待时间
	private final int wait_time = 10;

	MutexJob(String name, InterProcessLock lock) {
		this.name = name;
		this.lock = lock;
	}

	@Override
	public void run() {
		try {
			doWork();
		} catch (Exception e) {
			// ingore;
		}
	}

	public void doWork() throws Exception {
		try {
			if (!lock.acquire(wait_time, TimeUnit.SECONDS)) {
				System.err.println(name + "等待" + wait_time + "秒,仍未能获取到lock,准备放弃。");
			}
			// 模拟job执行时间0-2000毫秒
			int exeTime = new Random().nextInt(2000);
			System.out.println(name + "开始执行,预计执行时间= " + exeTime + "毫秒----------");
			Thread.sleep(exeTime);
		} catch (Exception e) {
			e.printStackTrace();
		} finally {
			lock.release();
		}
	}
}




锁测试代码

 

/**
 * 分布式锁实例
 * 
 * @author shencl
 */
public class DistributedLockExample {
	private static CuratorFramework client = ClientFactory.newClient();
	private static final String PATH = "/locks";

	// 进程内部(可重入)读写锁
	private static final InterProcessReadWriteLock lock;
	// 读锁
	private static final InterProcessLock readLock;
	// 写锁
	private static final InterProcessLock writeLock;

	static {
		client.start();
		lock = new InterProcessReadWriteLock(client, PATH);
		readLock = lock.readLock();
		writeLock = lock.writeLock();
	}

	public static void main(String[] args) {
		try {
			List<Thread> jobs = Lists.newArrayList();
			for (int i = 0; i < 10; i++) {
				Thread t = new Thread(new ParallelJob("Parallel任务" + i, readLock));
				jobs.add(t);
			}

			for (int i = 0; i < 10; i++) {
				Thread t = new Thread(new MutexJob("Mutex任务" + i, writeLock));
				jobs.add(t);
			}

			for (Thread t : jobs) {
				t.start();
			}
		} catch (Exception e) {
			e.printStackTrace();
		} finally {
			CloseableUtils.closeQuietly(client);
		}
	}
}


看到没,用法和java concurrent包里的ReentrantReadWriteLock 是一模一样的。

事实上,整个recipes包的目录结构、实现原理同java concurrent包的设置是很一致的。比如有queue,Semaphore,Barrier等类,。他整个就是模仿jdk的实现,只不过是基于分布式的!

 

后边的几项,Barriers(关卡),Atomic(原子量),Caches,Queues和java concurrent包里的类的用法是一样的,就不继续贴了,有些附件里有。

要说明的是:有的功能性能不是特别理想,网上也没见有大的项目的使用案例。比如基于CAS机制的atomic,在某些情况重试的效率还不如硬同步,要是zookeeper节点再一多,各个节点之间通过event触发的数据同步极其频繁。那性能可以想象。

 

三、测试方法

 curator提供了很好的测试工具,你甚至是可以在完全没有搭建zookeeper server端的情况下,完成测试。

有2个重要的类

TestingServer 模拟单点, TestingCluster模拟集群。

需要使用的话,得依赖

<dependency>
	<groupId>org.apache.curator</groupId>
	<artifactId>curator-test</artifactId>
	<version>2.5.0</version>
</dependency>


源码附件


全文完。

 

本文参考:

http://curator.apache.org/

http://www.cnblogs.com/hzhuxin/archive/2012/11/01/2749341.html

http://www.chengxuyuans.com/Java+/72042.html

http://macrochen.iteye.com/blog/1366136



哥们 DistributedAtomicIntegerExample 由于并发太大,延迟比较长,你把这一行
counter = new DistributedAtomicInteger(client, PATH, new RetryNTimes(100, 1000));
里的重试和等待时间加长些就行了,
另外程序里可以用CountDownLatch来替代不确定的sleep();

修改后可以这样:

package com.bj58.emc.study.curator.demo.atomic;

import java.util.List;
import java.util.concurrent.CountDownLatch;

import org.apache.curator.framework.CuratorFramework;
import org.apache.curator.framework.recipes.atomic.AtomicValue;
import org.apache.curator.framework.recipes.atomic.DistributedAtomicInteger;
import org.apache.curator.retry.RetryNTimes;
import org.apache.curator.utils.CloseableUtils;

import com.bj58.emc.study.curator.demo.utils.ClientFactory;
import com.google.common.collect.Lists;

/**
* 这个类我没能运行出期待的结果来,谁检查一下我的代码?

* @author shencl
*/
public class DistributedAtomicIntegerExample {
private static final int _1000 = 1000;
private static CuratorFramework client = ClientFactory.newClient();
private static final String PATH = "/counter";
public static volatile DistributedAtomicInteger counter;

static {
client.start();
counter = new DistributedAtomicInteger(client, PATH, new RetryNTimes(100, 1000));
}

public static void main(String[] args) {
final CountDownLatch countDownLatch = new CountDownLatch(_1000);
try {
counter.trySet(0);
List<Thread> jobs = Lists.newArrayList();
// 开1k个线程,不用同步机制,同时启动
for (int i = 0; i < _1000; i++) {
jobs.add(new Thread(new Runnable() {

@Override
public void run() {
try {
AtomicValue<Integer> rc = counter.increment();
System.out.println("success:" + rc.succeeded() + ";before:" + rc.preValue() + ";after:" + rc.postValue());
countDownLatch.countDown();
} catch (Exception e) {
e.printStackTrace();
}
}
}));

}

for (Thread t : jobs) {
t.start();
}

// 保证线程全部执行完毕
countDownLatch.await();
System.out.println("计数器最终的值=" + counter.get().postValue());
AtomicValue<Integer> rc = counter.get();
System.out.println("success:" + rc.succeeded() + ";before:" + rc.preValue() + ";after:" + rc.postValue());
} catch (Exception e) {
e.printStackTrace();
} finally {
CloseableUtils.closeQuietly(client);
}
}
}

你可能感兴趣的:(zookeeper学习之三(Curator客户端))