- k均值聚类算法考试例题_k均值算法(k均值聚类算法计算题)
寻找你83497
k均值聚类算法考试例题
?算法:第一步:选K个初始聚类中心,z1(1),z2(1),…,zK(1),其中括号内的序号为寻找聚类中心的迭代运算的次序号。聚类中心的向量值可任意设定,例如可选开始的K个.k均值聚类:---------一种硬聚类算法,隶属度只有两个取值0或1,提出的基本根据是“类内误差平方和最小化”准则;模糊的c均值聚类算法:--------一种模糊聚类算法,是.K均值聚类算法是先随机选取K个对象作为初始的聚类
- 机器学习-聚类算法
不良人龍木木
机器学习机器学习算法聚类
机器学习-聚类算法1.AHC2.K-means3.SC4.MCL仅个人笔记,感谢点赞关注!1.AHC2.K-means3.SC传统谱聚类:个人对谱聚类算法的理解以及改进4.MCL目前仅专注于NLP的技术学习和分享感谢大家的关注与支持!
- K-means 算法的介绍与应用
小魏冬琅
matlab算法kmeans机器学习
目录引言K-means算法的基本原理表格总结:K-means算法的主要步骤K-means算法的MATLAB实现优化方法与改进K-means算法的应用领域表格总结:K-means算法的主要应用领域结论引言K-means算法是一种经典的基于距离的聚类算法,在数据挖掘、模式识别、图像处理等多个领域中得到了广泛应用。其核心思想是将相似的数据对象聚类到同一个簇中,而使得簇内对象的相似度最大、簇间的相似度最小
- 聚类分析 | Python密度聚类(DBSCAN)
天天酷科研
聚类分析算法(CLA)python聚类机器学习DBSCAN
密度聚类是一种无需预先指定聚类数量的聚类方法,它依赖于数据点之间的密度关系来自动识别聚类结构。本文中,演示如何使用密度聚类算法,具体是DBSCAN(Density-BasedSpatialClusteringofApplicationswithNoise)来对一个实际的数据集进行聚类分析。一、基本介绍密度聚类的核心思想是将数据点分为高密度区域和低密度区域。高密度区域内的数据点被认为属于同一簇,而低
- pandas/numpy数据结构算法(之行列变换)(二) (tag:行列转换,迪卡尔积,内置函数,数据结构)
MrStubborn_aebe
目录:****1.Numpy-diag矩阵变换stack()/unstack()pd.pivot_table()pd.melt()groupby聚类算法mapping小技巧numpy.vectorize()**在这**里插入图片描述前言最近遇到很多需要迭代和归并数据的情况,一直以来的做法,都是循环主要的键,去进行后续操作。这是最典型的Python操作,然而还是上次提到的效率问题。记得之前朋友和我讲
- 机器学习之 K-均值聚类算法
维生素¥
机器学习机器学习算法均值算法
K-均值(K-means)聚类算法是一种常用的无监督学习算法,用于将数据集划分为K个不同的簇。该算法通过迭代的方式将数据点分配到最近的簇中,并更新簇的中心,直到收敛为止。一、K-均值聚类算法的基本步骤:初始化K个簇的中心点(可以随机选择或者根据数据集初始化)。将每个数据点分配到最近的簇中。更新每个簇的中心点为该簇所有数据点的平均值。重复步骤2和3,直到簇的中心点不再改变或达到指定的迭代次数。二、K
- 机器学习中的 K-均值聚类算法及其优缺点
安科瑞蒋静
机器学习算法均值算法
K-均值聚类算法是一种常用的无监督学习算法,用于将一组数据点划分为K个不同的聚类。该算法的主要思想是将数据点分配给最接近的聚类中心,并通过迭代优化聚类中心位置,使得聚类内部的数据点之间的距离最小化。算法流程如下:初始化K个聚类中心,可以是随机选择的数据点或者通过其他方法选择。分别计算每个数据点到K个聚类中心的距离,并将其分配给距离最近的聚类中心。更新每个聚类的中心位置为其内部所有数据点的平均值。重
- 【车辆轨迹处理】python实现轨迹点的聚类(一)——DBSCAN算法
空之箱大战春日影
车辆轨迹数据处理算法python聚类
文章目录前言一、单辆车轨迹的聚类与分析1.引入库2.聚类3.聚类评价二、整个数据集多辆车聚类1.聚类2.整体评价前言 空间聚类是基于一定的相似性度量对空间大数据集进行分组的过程。空间聚类分析是一种无监督形式的机器学习。通过空间聚类可以从空间数据集中发现隐含的信息。 作者在科研工作中,需要对某些车辆的轨迹数据进行一些空间聚类分析,以期望发现车辆在行驶过程中发生轨迹点”聚集“的行为。当等时间间隔的
- 数学建模统计题中常用的聚类分类
皆过客,揽星河
数学建模大赛数学建模算法k-means数据处理Pythonnumpy
聚类分类K均值聚类(K-MeansClustering)是一种广泛使用的聚类算法,旨在将数据点分成K个簇,使得簇内的数据点尽可能相似,而簇间的数据点差异尽可能大。以下是对K均值聚类的详细介绍:算法原理K均值聚类算法通过迭代的方式优化簇的划分,步骤如下:1.初始化:选择K个初始簇中心(也称为质心)。这些初始簇中心可以通过随机选择K个数据点,或使用更高级的方法(如K均值++初始化)来确定。2.分配阶段
- Spark入门:KMeans聚类算法
17111_Chaochao1984a
算法sparkkmeans
聚类(Clustering)是机器学习中一类重要的方法。其主要思想使用样本的不同特征属性,根据某一给定的相似度度量方式(如欧式距离)找到相似的样本,并根据距离将样本划分成不同的组。聚类属于典型的无监督学习(UnsupervisedLearning)方法。与监督学习(如分类器)相比1,无监督学习的训练集没有人为标注的结果。在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。
- Spark MLlib模型训练—聚类算法 K-means
不二人生
SparkML实战算法spark-ml聚类
SparkMLlib模型训练—聚类算法K-meansK-means是一种经典的聚类算法,广泛应用于数据挖掘、图像处理、推荐系统等领域。它通过将数据划分为(k)个簇(clusters),使得同一簇内的数据点尽可能相似,而不同簇之间的数据点差异尽可能大。ApacheSpark提供了K-means聚类算法的高效实现,支持大规模数据的分布式计算。本文将详细介绍K-means聚类算法的原理,并结合Spark
- Spark MLlib模型训练—聚类算法 Bisecting K-means
不二人生
SparkML实战算法spark-ml聚类
SparkMLlib模型训练—聚类算法BisectingK-means由于传统的KMeans算法的聚类结果易受到初始聚类中心点选择的影响,因此在传统的KMeans算法的基础上进行算法改进,对初始中心点选取比较严格,各中心点的距离较远,这就避免了初始聚类中心会选到一个类上,一定程度上克服了算法陷入局部最优状态。二分KMeans(BisectingKMeans)算法的主要思想是:首先将所有点作为一个簇
- 自然语言处理系列五十四》文本聚类算法》K-means文本聚类算法原理
陈敬雷-充电了么-CEO兼CTO
算法大数据人工智能自然语言处理nlpai人工智能kmeansAIGC聚类
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列五十四文本聚类算法》K-means文本聚类算法原理K-means文本聚类算法代码实战总结自然语言处理系列五十四文本聚类算法》K-means文本聚类算法原理K-means文本聚类是K-means算法的一个常用应用场景,下面介绍
- 自然语言处理系列五十五》文本聚类算法》LDA主题词-潜在狄利克雷分布模型算法原理
陈敬雷-充电了么-CEO兼CTO
人工智能大数据算法算法自然语言处理聚类AIGCaigcchatgpt大数据
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列五十五文本聚类算法》LDA主题词-潜在狄利克雷分布模型算法原理LDA主题词-潜在狄利克雷分布模型代码实战总结自然语言处理系列五十五文本聚类算法》LDA主题词-潜在狄利克雷分布模型算法原理LDA是潜在狄利克雷分布模型的简称,也
- 机器学习:DBSCAN算法(内有精彩动图)
吃什么芹菜卷
机器学习机器学习算法人工智能
目录前言一、DBSCAN算法1.动图展示(图片转载自网络)2.步骤详解3.参数配置二、代码实现1.完整代码2.代码详解1.导入数据2.通过循环确定参数最佳值总结前言DBSCAN(Density-BasedSpatialClusteringofApplicationswithNoise)是一种基于密度的聚类算法。它可以发现任意形状的簇并能够处理噪声数据。一、DBSCAN算法1.动图展示(图片转载自网
- 模糊C-means算法原理及Python实践
doublexiao79
数据分析与挖掘算法python
模糊C-means算法原理及Python实践一、目标函数二、隶属度矩阵和聚类中心三、算法步骤四、终止条件五、算法特点六、Python实现模糊C-means(FuzzyC-Means,简称FCM)算法是一种经典的模糊聚类算法,它在数据分析、数据挖掘、图像处理等多个领域有着广泛的应用。FCM算法通过为每个数据点分配模糊隶属度,将数据点划分到不同的聚类中心,从而实现对数据集的聚类分析。以下是模糊C-me
- 【闲谈】聚类算法的金融数据挖掘应用及实践
爱写代码的July
其他金融大数据数据分析数据可视化python
目录一数据挖掘技术在金融领域应用概述二聚类算法介绍三聚类算法在金融数据挖掘中的应用1.聚类算法在客户细分领域的应用2.聚类算法在客户信用评估领域的应用四算法实践与个人体会1.聚类算法的实践——以k-means算法为例的银行客户数据集分析2.个人实际应用体会五总结与展望参考文献一数据挖掘技术在金融领域应用概述随着金融行业的不断发展,金融领域数字化转型程度愈发加深,计算机科学在金融领域的应用显得更为重
- 程序猿成长之路之数据挖掘篇——Kmeans聚类算法
zygswo
数据挖掘数据挖掘算法kmeans
Kmeans是一种可以将一个数据集按照距离(相似度)划分成不同类别的算法,它无需借助外部标记,因此也是一种无监督学习算法。什么是聚类用官方的话说聚类就是将物理或抽象对象的集合分成由类似的对象组成的多个类的过程。用自己的话说聚类是根据不同样本数据间的相似度进行种类划分的算法。这种划分可以基于我们的业务需求或建模需求来完成,也可以单纯地帮助我们探索数据的自然结构和分布。什么是K-means聚类用官方的
- 学习笔记1 三大聚类方法:K-means聚类、层次聚类、DBSCAN聚类
泠泠风来
聚类matlab
学习笔记1:三大聚类方法:K-means聚类、层次聚类、DBSCAN聚类文章目录前言一、K-means聚类操作过程二、层次聚类操作过程三、DBSCAN聚类操作过程总结前言在样本数量较多的情况下,可以通过聚类将样本划分为多个类,对每个类中单独使用模型进行分析和相关运算,亦可以探究不同类之间的相关性和主要差异。例如MathorCup2022年D题此外,可以借助https://www.naftaliha
- K-means聚类算法:从原理到实践的全面解读
一休哥助手
人工智能算法kmeans聚类
引言在当今数据驱动的时代,机器学习技术的发展已经成为各行各业的重要驱动力。在机器学习中,聚类算法是一类被广泛应用的技术之一。聚类旨在将数据集中的样本划分为不同的组,使得组内的样本相似度高,组间的相似度低。K-means聚类算法作为聚类算法中的一种经典方法,因其简单、高效的特性被广泛应用于各个领域。在本文中,我们将深入探讨K-means聚类算法,从基本原理到实际应用,以及算法的优化和实现方法。首先,
- 聚类算法-Kmeans聚类
红米煮粥
机器学习kmeans聚类
一、K-means聚类介绍1.含义K-means聚类是一种非常流行的无监督学习算法,用于将数据点划分为预定义的K个簇(或组),其中每个簇由其质心(即簇中所有点的均值)定义。K-means算法的目标是使簇内的点尽可能紧密地聚集在一起,同时使不同簇之间的点尽可能远离。2.基本步骤:选择K值:首先,你需要决定将数据分成多少个簇,即K的值。K的选择通常是基于问题的上下文或通过一些启发式方法(如肘部法则)来
- 每天一个数据分析题(五百零二)- 分割式聚类算法
跟着紫枫学姐学CDA
数据分析题库算法数据分析聚类
以下哪个选项是分割式聚类算法?A.K-Means。B.CentroidMethodC.Ward’sMethodD.以上皆非数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练习题库,数据分析从业者刷题必备神器!
- 论机器学习中的 K-均值聚类算法及其优缺点
风跟我说过她
机器学习机器学习算法均值算法聚类
K-均值聚类算法是一种常见的机器学习算法,用于将数据集分为预先指定数量的簇。下面是对K-均值聚类算法以及其优缺点的讲解:算法步骤:a.随机选择K个中心点作为初始聚类中心。b.将数据集中的每个样本分配到最近的中心点(即最近的簇)。c.计算每个簇的新中心点,即计算簇内样本的平均值。d.重复步骤b和c,直到聚类中心不再发生变化或达到最大迭代次数。优点:a.实现简单,易于理解和实现。b.对大型数据集也能够
- 机器学习中的 K-均值聚类算法及其优缺点
weixin_63207763
机器学习算法均值算法
K-均值聚类算法是一种无监督学习算法,用于将数据集中的样本分为K个不同的类别。该算法的基本思想是通过不断迭代地更新类别的中心点,将每个样本分配给离其最近的中心点所代表的类别。算法步骤:随机选择K个样本作为初始的K个类别中心点。将每个样本分配到离其最近的类别中心点所代表的类别。根据分配结果,更新每个类别的中心点为该类别内所有样本的平均值。重复步骤2和步骤3,直到中心点不再更新或达到最大迭代次数。优点
- 机器学习中的 K-均值聚类算法及其优缺点
刘小董
学习心得机器学习
K-均值聚类算法是一种常用的无监督学习算法,用于将样本数据划分为K个不同的簇。其基本思想是通过迭代去优化簇的中心位置,使得每个样本点到所属簇的中心点的距离最小。算法步骤如下:初始化K个簇的中心点,可以随机选择K个样本点作为初始中心点。对于每个样本点,计算其与各个簇中心点的距离,并将其划分到距离最近的簇中。更新每个簇的中心点,将其设为该簇中所有样本点的均值。重复步骤2和步骤3,直到达到停止条件(例如
- 【经验分享】分类算法与聚类算法有什么区别?白话讲解
思通数科x
算法分类聚类
经常有人会提到这个问题,从我个人的观点和经验来说2者最明显的特征是:分类是有具体分类的数量,而聚类是没有固定的分类数量。你可以想象一下,分类算法就像是给你一堆水果,然后告诉你苹果、香蕉、橙子分别应该放在哪里。它已经知道每个水果属于哪个类别,所以你只需要按照这些规则把水果放到相应的篮子里。这就像是有一个现成的标签系统,你要做的就是把东西放到正确的位置。而聚类算法呢,更像是你面前有一堆乱七八糟的东西,
- 深度学习与机器学习的关系
数字化信息化智能化解决方案
深度学习机器学习人工智能
深度学习和机器学习的关系深度学习是机器学习的一个子领域,专注于使用神经网络,特别是深度神经网络(DNN)来解决各种问题。可以说,深度学习是机器学习的一种方法或技术。两者都致力于通过从数据中提取有用的信息或模式来自动改进算法的性能。机器学习涵盖了更广泛的算法和技术,包括决策树、支持向量机、随机森林、聚类算法等,而深度学习则专注于神经网络和相关的优化技术。优缺点比较机器学习:优点:通用性:机器学习算法
- GWO优化kmeans
2301_78492934
机器学习算法人工智能matlabkmeans聚类
GWO(灰狼优化器)是一种群体智能优化算法,它模拟了灰狼的社会结构和狩猎行为。GWO算法通过模拟灰狼的等级制度、狩猎策略和搜索机制来寻找问题的最优解。而K-means是一种经典的聚类算法,用于将数据点划分为K个簇。将GWO优化算法应用于K-means聚类中,主要是为了解决K-means算法对初始簇中心敏感和容易陷入局部最优解的问题。以下是GWO优化K-means的原理和过程的详细介绍:1.GWO算
- GA-kmedoid 遗传算法优化K-medoids聚类
2301_78492934
机器学习支持向量机人工智能matlab聚类
遗传算法优化K-medoids聚类是一种结合了遗传算法和K-medoids聚类算法的优化方法。遗传算法是一种基于自然选择和遗传机制的随机优化算法,它通过模拟生物进化过程中的遗传、交叉、变异等操作来寻找问题的最优解。而K-medoids聚类算法是一种基于划分的聚类方法,它通过选择K个数据点作为簇中心,将数据点分配到最近的簇中心,以最小化每个数据点到其所属簇中心的距离之和。K-medoids聚类算法是
- 聚类分析入门:使用Python和K-means算法进行数据聚类
Evaporator Core
python
文章标题:聚类分析入门:使用Python和K-means算法进行数据聚类简介聚类分析是机器学习中的一个重要任务,它涉及将数据集中的样本分成多个类别或簇,使得同一簇内的样本相似度较高,不同簇之间的样本相似度较低。K-means算法是一种常用的聚类算法,它通过迭代优化簇的中心点来实现聚类。本文将介绍如何使用Python编程语言和Scikit-learn库实现K-means算法,以及如何对数据进行聚类分
- 安装数据库首次应用
Array_06
javaoraclesql
可是为什么再一次失败之后就变成直接跳过那个要求
enter full pathname of java.exe的界面
这个java.exe是你的Oracle 11g安装目录中例如:【F:\app\chen\product\11.2.0\dbhome_1\jdk\jre\bin】下的java.exe 。不是你的电脑安装的java jdk下的java.exe!
注意第一次,使用SQL D
- Weblogic Server Console密码修改和遗忘解决方法
bijian1013
Welogic
在工作中一同事将Weblogic的console的密码忘记了,通过网上查询资料解决,实践整理了一下。
一.修改Console密码
打开weblogic控制台,安全领域 --> myrealm -->&n
- IllegalStateException: Cannot forward a response that is already committed
Cwind
javaServlets
对于初学者来说,一个常见的误解是:当调用 forward() 或者 sendRedirect() 时控制流将会自动跳出原函数。标题所示错误通常是基于此误解而引起的。 示例代码:
protected void doPost() {
if (someCondition) {
sendRedirect();
}
forward(); // Thi
- 基于流的装饰设计模式
木zi_鸣
设计模式
当想要对已有类的对象进行功能增强时,可以定义一个类,将已有对象传入,基于已有的功能,并提供加强功能。
自定义的类成为装饰类
模仿BufferedReader,对Reader进行包装,体现装饰设计模式
装饰类通常会通过构造方法接受被装饰的对象,并基于被装饰的对象功能,提供更强的功能。
装饰模式比继承灵活,避免继承臃肿,降低了类与类之间的关系
装饰类因为增强已有对象,具备的功能该
- Linux中的uniq命令
被触发
linux
Linux命令uniq的作用是过滤重复部分显示文件内容,这个命令读取输入文件,并比较相邻的行。在正常情 况下,第二个及以后更多个重复行将被删去,行比较是根据所用字符集的排序序列进行的。该命令加工后的结果写到输出文件中。输入文件和输出文件必须不同。如 果输入文件用“- ”表示,则从标准输入读取。
AD:
uniq [选项] 文件
说明:这个命令读取输入文件,并比较相邻的行。在正常情况下,第二个
- 正则表达式Pattern
肆无忌惮_
Pattern
正则表达式是符合一定规则的表达式,用来专门操作字符串,对字符创进行匹配,切割,替换,获取。
例如,我们需要对QQ号码格式进行检验
规则是长度6~12位 不能0开头 只能是数字,我们可以一位一位进行比较,利用parseLong进行判断,或者是用正则表达式来匹配[1-9][0-9]{4,14} 或者 [1-9]\d{4,14}
&nbs
- Oracle高级查询之OVER (PARTITION BY ..)
知了ing
oraclesql
一、rank()/dense_rank() over(partition by ...order by ...)
现在客户有这样一个需求,查询每个部门工资最高的雇员的信息,相信有一定oracle应用知识的同学都能写出下面的SQL语句:
select e.ename, e.job, e.sal, e.deptno
from scott.emp e,
(se
- Python调试
矮蛋蛋
pythonpdb
原文地址:
http://blog.csdn.net/xuyuefei1988/article/details/19399137
1、下面网上收罗的资料初学者应该够用了,但对比IBM的Python 代码调试技巧:
IBM:包括 pdb 模块、利用 PyDev 和 Eclipse 集成进行调试、PyCharm 以及 Debug 日志进行调试:
http://www.ibm.com/d
- webservice传递自定义对象时函数为空,以及boolean不对应的问题
alleni123
webservice
今天在客户端调用方法
NodeStatus status=iservice.getNodeStatus().
结果NodeStatus的属性都是null。
进行debug之后,发现服务器端返回的确实是有值的对象。
后来发现原来是因为在客户端,NodeStatus的setter全部被我删除了。
本来是因为逻辑上不需要在客户端使用setter, 结果改了之后竟然不能获取带属性值的
- java如何干掉指针,又如何巧妙的通过引用来操作指针————>说的就是java指针
百合不是茶
C语言的强大在于可以直接操作指针的地址,通过改变指针的地址指向来达到更改地址的目的,又是由于c语言的指针过于强大,初学者很难掌握, java的出现解决了c,c++中指针的问题 java将指针封装在底层,开发人员是不能够去操作指针的地址,但是可以通过引用来间接的操作:
定义一个指针p来指向a的地址(&是地址符号):
- Eclipse打不开,提示“An error has occurred.See the log file ***/.log”
bijian1013
eclipse
打开eclipse工作目录的\.metadata\.log文件,发现如下错误:
!ENTRY org.eclipse.osgi 4 0 2012-09-10 09:28:57.139
!MESSAGE Application error
!STACK 1
java.lang.NoClassDefFoundError: org/eclipse/core/resources/IContai
- spring aop实例annotation方法实现
bijian1013
javaspringAOPannotation
在spring aop实例中我们通过配置xml文件来实现AOP,这里学习使用annotation来实现,使用annotation其实就是指明具体的aspect,pointcut和advice。1.申明一个切面(用一个类来实现)在这个切面里,包括了advice和pointcut
AdviceMethods.jav
- [Velocity一]Velocity语法基础入门
bit1129
velocity
用户和开发人员参考文档
http://velocity.apache.org/engine/releases/velocity-1.7/developer-guide.html
注释
1.行级注释##
2.多行注释#* *#
变量定义
使用$开头的字符串是变量定义,例如$var1, $var2,
赋值
使用#set为变量赋值,例
- 【Kafka十一】关于Kafka的副本管理
bit1129
kafka
1. 关于request.required.acks
request.required.acks控制者Producer写请求的什么时候可以确认写成功,默认是0,
0表示即不进行确认即返回。
1表示Leader写成功即返回,此时还没有进行写数据同步到其它Follower Partition中
-1表示根据指定的最少Partition确认后才返回,这个在
Th
- lua统计nginx内部变量数据
ronin47
lua nginx 统计
server {
listen 80;
server_name photo.domain.com;
location /{set $str $uri;
content_by_lua '
local url = ngx.var.uri
local res = ngx.location.capture(
- java-11.二叉树中节点的最大距离
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class MaxLenInBinTree {
/*
a. 1
/ \
2 3
/ \ / \
4 5 6 7
max=4 pass "root"
- Netty源码学习-ReadTimeoutHandler
bylijinnan
javanetty
ReadTimeoutHandler的实现思路:
开启一个定时任务,如果在指定时间内没有接收到消息,则抛出ReadTimeoutException
这个异常的捕获,在开发中,交给跟在ReadTimeoutHandler后面的ChannelHandler,例如
private final ChannelHandler timeoutHandler =
new ReadTim
- jquery验证上传文件样式及大小(好用)
cngolon
文件上传jquery验证
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script src="jquery1.8/jquery-1.8.0.
- 浏览器兼容【转】
cuishikuan
css浏览器IE
浏览器兼容问题一:不同浏览器的标签默认的外补丁和内补丁不同
问题症状:随便写几个标签,不加样式控制的情况下,各自的margin 和padding差异较大。
碰到频率:100%
解决方案:CSS里 *{margin:0;padding:0;}
备注:这个是最常见的也是最易解决的一个浏览器兼容性问题,几乎所有的CSS文件开头都会用通配符*来设
- Shell特殊变量:Shell $0, $#, $*, $@, $?, $$和命令行参数
daizj
shell$#$?特殊变量
前面已经讲到,变量名只能包含数字、字母和下划线,因为某些包含其他字符的变量有特殊含义,这样的变量被称为特殊变量。例如,$ 表示当前Shell进程的ID,即pid,看下面的代码:
$echo $$
运行结果
29949
特殊变量列表 变量 含义 $0 当前脚本的文件名 $n 传递给脚本或函数的参数。n 是一个数字,表示第几个参数。例如,第一个
- 程序设计KISS 原则-------KEEP IT SIMPLE, STUPID!
dcj3sjt126com
unix
翻到一本书,讲到编程一般原则是kiss:Keep It Simple, Stupid.对这个原则深有体会,其实不仅编程如此,而且系统架构也是如此。
KEEP IT SIMPLE, STUPID! 编写只做一件事情,并且要做好的程序;编写可以在一起工作的程序,编写处理文本流的程序,因为这是通用的接口。这就是UNIX哲学.所有的哲学真 正的浓缩为一个铁一样的定律,高明的工程师的神圣的“KISS 原
- android Activity间List传值
dcj3sjt126com
Activity
第一个Activity:
import java.util.ArrayList;import java.util.HashMap;import java.util.List;import java.util.Map;import android.app.Activity;import android.content.Intent;import android.os.Bundle;import a
- tomcat 设置java虚拟机内存
eksliang
tomcat 内存设置
转载请出自出处:http://eksliang.iteye.com/blog/2117772
http://eksliang.iteye.com/
常见的内存溢出有以下两种:
java.lang.OutOfMemoryError: PermGen space
java.lang.OutOfMemoryError: Java heap space
------------
- Android 数据库事务处理
gqdy365
android
使用SQLiteDatabase的beginTransaction()方法可以开启一个事务,程序执行到endTransaction() 方法时会检查事务的标志是否为成功,如果程序执行到endTransaction()之前调用了setTransactionSuccessful() 方法设置事务的标志为成功则提交事务,如果没有调用setTransactionSuccessful() 方法则回滚事务。事
- Java 打开浏览器
hw1287789687
打开网址open浏览器open browser打开url打开浏览器
使用java 语言如何打开浏览器呢?
我们先研究下在cmd窗口中,如何打开网址
使用IE 打开
D:\software\bin>cmd /c start iexplore http://hw1287789687.iteye.com/blog/2153709
使用火狐打开
D:\software\bin>cmd /c start firefox http://hw1287789
- ReplaceGoogleCDN:将 Google CDN 替换为国内的 Chrome 插件
justjavac
chromeGooglegoogle apichrome插件
Chrome Web Store 安装地址: https://chrome.google.com/webstore/detail/replace-google-cdn/kpampjmfiopfpkkepbllemkibefkiice
由于众所周知的原因,只需替换一个域名就可以继续使用Google提供的前端公共库了。 同样,通过script标记引用这些资源,让网站访问速度瞬间提速吧
- 进程VS.线程
m635674608
线程
资料来源:
http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/001397567993007df355a3394da48f0bf14960f0c78753f000 1、Apache最早就是采用多进程模式 2、IIS服务器默认采用多线程模式 3、多进程优缺点 优点:
多进程模式最大
- Linux下安装MemCached
字符串
memcached
前提准备:1. MemCached目前最新版本为:1.4.22,可以从官网下载到。2. MemCached依赖libevent,因此在安装MemCached之前需要先安装libevent。2.1 运行下面命令,查看系统是否已安装libevent。[root@SecurityCheck ~]# rpm -qa|grep libevent libevent-headers-1.4.13-4.el6.n
- java设计模式之--jdk动态代理(实现aop编程)
Supanccy2013
javaDAO设计模式AOP
与静态代理类对照的是动态代理类,动态代理类的字节码在程序运行时由Java反射机制动态生成,无需程序员手工编写它的源代码。动态代理类不仅简化了编程工作,而且提高了软件系统的可扩展性,因为Java 反射机制可以生成任意类型的动态代理类。java.lang.reflect 包中的Proxy类和InvocationHandler 接口提供了生成动态代理类的能力。
&
- Spring 4.2新特性-对java8默认方法(default method)定义Bean的支持
wiselyman
spring 4
2.1 默认方法(default method)
java8引入了一个default medthod;
用来扩展已有的接口,在对已有接口的使用不产生任何影响的情况下,添加扩展
使用default关键字
Spring 4.2支持加载在默认方法里声明的bean
2.2
将要被声明成bean的类
public class DemoService {