- 信号处理抽取多项滤波的数学推导与仿真
jz_ddk
信号处理python算法
昨天的《信号处理之插值、抽取与多项滤波》,已经介绍了插值抽取的多项滤率,今天详细介绍多项滤波的数学推导,并附上实战仿真代码。一、数学变换推导1.多相分解的核心思想将FIR滤波器的系数h(n)h(n)h(n)按相位分组,每组对应输入信号的不同抽样相位。通过分相、滤波、重组,实现与原FIR等效的处理。2.数学变换推导FIR滤波器的系统函数可表示为:H(z)=∑n=0N−1h(n)z−nH(z)=\su
- 23章11节:自助抽样及其在R语言中的实现与验证
DAT|R科学与人工智能
用R探索医药数据科学r语言开发语言r-4.2.1microsoft信息可视化
在统计学中,数据分析的核心任务之一是如何在样本数据的基础上推断总体的性质。传统方法往往依赖于已知的概率分布假设和解析推导,但在现实问题中,我们往往无法准确得知总体分布,或者数据样本量较小,难以满足经典统计推断方法的要求。自助抽样作为一种非参数的计算方法,为我们提供了基于样本数据“自我重复”构建抽样分布的途径。1977年,斯坦福大学的B.Efron在著名论文《BootstrapMethods:Ano
- 【A2DP】MPEG - 2/4 AAC 编解码器互操作性要求详解
byte轻骑兵
蓝牙技术探索与应用A2DPAAC编解码蓝牙通信技术
目录一、概述二、编解码器特定信息元素(CodecSpecificInformationElements)2.1信息元素结构2.2对象类型(ObjectType)2.3MPEG-DDRC2.4采样频率(SamplingFrequency)2.5通道(Channels)2.6比特率(Bitrate)2.7可变比特率(VBR)三、媒体包头部和媒体有效负载格式四、总结五、参考资料在蓝牙音频传输领域,MPE
- 数据挖掘的建模流程
慢跑的Liam
算法数据挖掘算法流程模型构建
1、定义数据挖掘目标任务理解指标确定2、数据取样建模抽样(大数据是用过滤后的全量数据)抽样之前需要衡量数据质量衡量的标准主要有以下几点:资料完整无缺,各类指标齐全数据准确无误,反映的都是正常状态下的数据数据抽样的方式:随机抽样等距抽样分层抽样从起始位置开始抽样分类抽样实时采集3、数据探索数据质量分析1.数据质量分析是数据挖掘分析结论有效性的基础2.缺失值分析3.异常值分析是用来检测数据是否有录入错
- 【AI视野·今日NLP 自然语言处理论文速览 第八十期】Fri, 1 Mar 2024
hitrjj
LLMNLPPapers人工智能自然语言处理NLPLLM大语言模型
AI视野·今日CS.NLP自然语言处理论文速览Fri,1Mar2024Totally67papers上期速览✈更多精彩请移步主页DailyComputationandLanguagePapersLooseLIPSSinkShips:AskingQuestionsinBattleshipwithLanguage-InformedProgramSamplingAuthorsGabrielGrand,V
- 统计学基础知识点刷题(task2)
sm376624607
统计学
参考视频:可汗学院《统计学》参考书籍:《深入浅出统计学》文章目录概念1:中心极限定理概念2:置信区间概念3:伯努利分布概念4:误差范围概念5:小样本容量置信区间概念1:中心极限定理核心内容:随着抽样次数趋于∞\infty∞,样本均值的抽样分布趋近于正态分布,且该正态分布的均值为总体均值。X‾服从N(μ,σ/n)\overline{X}服从N(\mu,\sigma/\sqrt{n})X服从N(μ,σ
- 音频原始数据解释
陈皮话梅糖@
FFmpeg音视频高阶技术讲解OpenGLES连载音视频ffmpegh.264
音频原始数据是指音频信号在数字化过程中生成的未经过压缩或处理的数字数据。它是音频信号的最基础表示形式,直接反映了声音波形的幅度随时间变化的情况。以下是对音频原始数据的详细解释:1.音频信号的数字化音频信号是连续的模拟信号(即声波),在数字化过程中,需要将其转换为离散的数字数据。这个过程包括以下几个步骤:(1)采样(Sampling)采样是指以固定的时间间隔对连续的音频信号进行取样,记录信号在每个时
- ssd训练自己的数据集
reset2021
目标检测目标检测python深度学习人工智能pytorch
基于SSD算法实现对自己数据集的训练与检测。(该专题以操作为主)SSD是一种非常优秀的one-stage目标检测方法,one-stage算法就是目标检测和分类是同时完成的,其主要思路是利用CNN提取特征后,均匀地在图片的不同位置进行密集抽样,抽样时可以采用不同尺度和长宽比,物体分类与预测框的回归同时进行,整个过程只需要一步,所以其优势是速度快。这篇文档主要讲述怎样用SSD算法来实现对自己数据集的训
- 不同方法降低视频分辨率
之群害马
音视频人工智能
将512x512分辨率的视频转换为256x256分辨率有两种主要的方法,每种方法都有其特定的应用场景和结果。方法不同方法一:降低像素和清晰度,不改变视频的画面尺寸这种方法通常指的是在视频播放时,视频的物理尺寸(即在屏幕上的显示大小)保持不变,但视频的清晰度降低。这种转换主要是通过下采样(downsampling)来实现的,具体步骤如下:下采样:将每个原来的像素信息合并成一个新的像素。例如,在从51
- 什么是插值?(通俗解释)
MO__YE
计算机视觉人工智能
什么是插值?(通俗解释)想象一下,你有一本100页的书,现在你想把它缩小到50页或放大到200页,但是你不想丢失重要的信息。你会怎么做?缩小(Downsampling):你可以挑选关键的内容,把不重要的部分去掉。放大(Upsampling):你可以在两页之间补充一些额外的内容,使它们读起来更连贯。在图像处理中,插值(Interpolation)就是如何在缩放图片时,生成新的像素点,让图片看起来更自
- 使用MATLAB实现SMOTE算法
PixelLancer
matlab算法人工智能Matlab
在数据挖掘和机器学习中,合成少数类过采样技术(SyntheticMinorityOver-samplingTechnique,简称SMOTE)是一种常用的处理类别不平衡问题的方法。本文将介绍如何使用MATLAB实现SMOTE算法,并提供相应的源代码。SMOTE算法通过合成新的少数类样本来平衡类别不平衡的数据集。它通过在少数类样本之间插入合成样本,以增加少数类样本的数量。这些合成样本是通过在少数类样
- CosyVoice /F5-TTS /GPT-SoVITS /Fish-Speech 开源语音克隆与文本转语音(TTS)项目的对比整理
云樱梦海
Github开源项目开源语音克隆
四个主流开源语音克隆与文本转语音(TTS)项目的对比整理,基于公开资料与实测反馈总结:项目CosyVoiceF5-TTSGPT-SoVITSFish-Speech核心技术双向流式语音合成,支持离线与流式一体化建模基于流匹配的ConvNeXt文本表示,SwaySampling采样策略零样本/少样本语音克隆,结合GPT与SoVITS架构多语言TTS模型,支持无音素依赖的跨语言合成克隆效果音色一致性高(
- 最小边际采样在分类任务中的应用
ningaiiii
机器学习与深度学习分类数据挖掘人工智能
最小边际采样在分类任务中的应用在机器学习的分类任务里,如何高效利用有限的标注数据,一直是研究的重点。最小边际采样(LeastMarginSampling)作为主动学习策略中的一种,为解决这一问题提供了独特的思路。本文将深入探讨最小边际采样在分类任务中的原理、应用以及优势与挑战。一、最小边际采样的原理最小边际采样的核心概念是基于模型预测概率来衡量样本的不确定性。在一个多分类问题中,模型会对每个样本预
- Scikit-learn_聚类算法_K均值聚类
飞Link
Water算法机器学习人工智能
一.描述首先从X数据集中选择k个样本作为质心,然后重复以下两个步骤来更新质心,直到质心不再显著移动为:第一步将每个样本分配到距离最近的质心第二步根据每二个质心所有样本的平均值来创建新的质心二.用法和参数KMeans类MiniBatchKMeans类:是KMeans类的变种,他是用小批量来减少计算时间,而多个批次仍然尝试优化相同的目标函数。小批量是输入数据的子集,是每次训练迭代中的随机抽样。小批量大
- Python入门教程丨3.2 再见Excel!用Python这5个模块,我把3天工作压缩到3分钟
凌小添
Python教程pythonexcel开发语言
⭐还在用Excel手动算均值方差?还在为海量数据统计熬夜加班?用Python这5把「数据手术刀」写一次代码,就能直接复用,专业报告自动生成!本期内容:模块核心功能应用场景math数学计算几何、物理模拟random生成随机数据游戏、抽样测试statistics统计分析回归分析、市场调研numpy数组与矩阵运算图像处理、机器学习pandas表格数据处理与分析金融分析、数据清洗一、基础数学库1.1mat
- random(随机数)
MoRanzhi1203
python
random(随机数)Python的random库是用于生成随机数的标准库。它提供了各种功能,可以产生伪随机数、随机选择元素、打乱序列等。importrandom该模块实现了各种分布的伪随机数生成器。对于整数,从范围中有统一的选择。对于序列,存在随机元素的统一选择、用于生成列表的随机排列的函数、以及用于随机抽样而无需替换的函数。在实数轴上,有计算均匀、正态(高斯)、对数正态、负指数、伽马和贝塔分布
- 神经网络|(七)概率论基础知识-贝叶斯公式
西猫雷婶
概率论人工智能概率论
【1】引言前序我们已经了解了一些基础知识。古典概型:有限个元素参与抽样,每个元素被抽样的概率相等。条件概率:在某条件已经达成的前提下,新事件发生的概率。实际计算的时候,应注意区分,如果是计算综合概率,比如A已经发生时,B发生的概率,其实计算的目标是P(AB)。条件概率公式的通用表达式为P(B|A)=P(AB)/P(A),乘法表达式为P(AB)=P(B|A)P(A)全概率公式:全概率公式综合了所有条
- oracle两列数列找差异,ORACLE中比较两个数据库的差异
沙雕网友已上线
oracle两列数列找差异
方法一、用PL/SQLDEVELOPER来比较1.登陆数据库A.2.打开TOOLS菜单下的CompareUserObjects3.点TargetSession,登陆数据库B4.执行Compare5.返回的是所有不同的对象以及更新语句[@more@]方法二、1、对需要比较的表进行分析(可全表可抽样,自选),否则统计信息不准;2、通过dba_tab_col_statistics表的column_nam
- Llama 3:开源大模型的里程碑式突破
XianxinMao
llama开源
标题:Llama3:开源大模型的里程碑式突破文章信息摘要:Meta通过Llama3展现了开源LLM的重大突破:采用超大规模训练数据和多阶段训练方法(SFT、rejectionsampling、PPO和DPO),突破了传统的Chinchilla最优比例法则。在产品策略上,针对8B和70B两种规模采用不同的训练数据截止日期,实现差异化定位。即将发布的400B模型有望达到GPT-4级别性能,但同时也凸显
- 色度采样(4:4:4、4:2:2、4:2:0、4:1:1)详解
又吹风_Bassy
视频压缩技术图像处理色度采样YUV颜色空间视频编码标准
色度采样(4:4:4、4:2:2、4:2:0、4:1:1)详解色度采样概述色度采样(ChromaSubsampling)是一种在图像和视频处理中,通过减少色度分量(U、V)的采样量来压缩数据的技术。它利用了人眼对亮度(Luma,Y)比色度(Chroma,U/V)更加敏感的特性,从而在不明显影响视觉效果的前提下,显著降低数据量。在YUV颜色空间中,Y表示亮度,U和V表示色度分量。通过减少U和V的采样
- 基于Python的自然语言处理系列(2):Word2Vec(负采样)
会飞的Anthony
自然语言处理人工智能信息系统自然语言处理word2vec人工智能
在本系列的第二篇文章中,我们将继续探讨Word2Vec模型,这次重点介绍负采样(NegativeSampling)技术。负采样是一种优化Skip-gram模型训练效率的技术,它能在大规模语料库中显著减少计算复杂度。接下来,我们将通过详细的代码实现和理论讲解,帮助你理解负采样的工作原理及其在Word2Vec中的应用。1.Word2Vec(负采样)原理1.1负采样的背景在Word2Vec的Skip-g
- MATLAB代码实现的是对电机控制系统中自适应优化控制器与传统滑膜控制器性能的对比仿真
go5463158465
MATLAB专栏matlab
clear;%%初始参数设置motor_power=750;%电机额定功率(W)motor_speed_ref=3000;%电机额定转速(rpm)simulation_time=0.2;%仿真时间(s)sampling_time=0.001
- 备战2025美赛数学建模,蒙特卡洛模拟算法,2025美赛数学建模A题+B题+C题+D题+E题思路+模型+代码(1.24第一时间更新,)
灿灿数模
人工智能
备战2025美赛数学建模,蒙特卡洛模拟算法,2025美赛数学建模A题+B题+C题+D题+E题思路+模型+代码(1.24第一时间更新,)更新见文末名片一、引言蒙特卡洛模拟算法是一种基于概率和统计理论的数值计算方法,通过随机抽样来近似复杂系统的概率问题。它以摩纳哥著名的赌场蒙特卡洛命名,象征着其基于随机性的特点。二、算法原理蒙特卡洛模拟算法的核心思想是利用随机抽样来估计一个函数的期望值或者某个概率分布
- 嵌入式硬件篇---ADC模拟-数字转换
Ronin-Lotus
嵌入式硬件篇嵌入式硬件单片机学习stm32模块测试低代码笔记
文章目录前言第一部分:STM32ADC的主要特点1.分辨率2.多通道3.转换模式4.转换速度5.触发源6.数据对齐7.温度传感器和Vrefint通道第二部分:STM32ADC的工作流程:1.配置ADC2.启动ADC转换第三部分:ADC转化1.抽样2.量化3.编码第四部分:额外小知识总结前言以上就是今天要讲的内容,本文仅仅简单介绍了STM32中ADC模拟-数字转换的实现。第一部分:STM32ADC的
- 2017-SIGGRAPH-Google,MIT-(HDRNet)Deep Bilateral Learning for Real-Time Image Enhancements
WX Chen
HDR技术深度学习神经网络机器学习
双边网格本质上是一个可以保存边缘信息的3维的数据结构。对于一张2维图片,在2维空间中增加了一维代表像素的强度slice操作(上采样)BilateralGuidedUpsampling这篇文章用双边网格实现图像的操作算子的加速。算法的核心思想是将一幅高分辨率的图像通过下采样转换成一个双边网格,在双边网格中每个格子就是一个图像的仿射变换算子,它的原理是在空间与值域相近的区域内,相似输入图像的亮度经算子
- 【机器学习】主动学习-增加标签的操作方法-样本池采样(Pool-Based Sampling)
IT古董
机器学习机器学习学习人工智能
Pool-BasedSamplingPool-basedsampling是一种主动学习(ActiveLearning)方法,与流式选择性采样不同,它假设有一个预先定义的未标注样本池,算法从中选择最有价值的样本进行标注,以提升模型的性能。这种方法广泛应用于需要人工标注的场景,例如文本分类、图像识别等。核心思想预先准备一个未标注数据池(UnlabeledDataPool)。使用初始标注数据训练一个模型
- 大数据新视界 -- Hive 数据抽样实战与结果评估(2 - 16 - 2)
青云交
大数据新视界#Hive之道Hive数据抽样实战结果评估大数据应用Hive优化策略大数据sql
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- 大数据新视界 -- Hive 数据抽样:高效数据探索的方法(2 - 16 - 1)
青云交
大数据新视界#Hive之道Hive数据抽样大数据处理随机抽样分层抽样基于桶抽样结果评估大数据
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- Open3D 使用RANSAC分割平面
今夕是何年,
单目+双目计算机视觉
目录1,概述2,拟合平面3,实现过程4,主要函数:defsegment_plane(self,distance_threshold,ransac_n,num_iterations):'''5,代码实现6,结果展示1,概述随机抽样一致性算法QRANSAC(Randomsampleconsensus)是一种迭代的方法来从一系列包含有离异值的数据中计算数学模型参数的方法。RANSAC算法本质上由两步组成
- MATLAB|基于多时段动态电价的电动汽车有序充电策略优化
科研工作站
电动汽车matlab电动汽车动态电价场景分析无序充电有序充电粒子群
目录主要内容模型研究一、蒙特卡洛模拟部分代码部分结果一览下载链接主要内容该模型参考文献《基于多时段动态电价的电动汽车有序充电策略优化》,采用蒙特卡洛随机抽样方法来模拟电动汽车无序充电状态下的负荷曲线,并设置三个对比算例--基础场景(无电动汽车)、电动汽车无序充电和电动汽车有序充电场景,有序充电场景以电网端负荷差最小和用户侧充电成本最经济为目标,通过粒子群算法进行求解,程序采用matlab+matp
- 设计模式介绍
tntxia
设计模式
设计模式来源于土木工程师 克里斯托弗 亚历山大(http://en.wikipedia.org/wiki/Christopher_Alexander)的早期作品。他经常发表一些作品,内容是总结他在解决设计问题方面的经验,以及这些知识与城市和建筑模式之间有何关联。有一天,亚历山大突然发现,重复使用这些模式可以让某些设计构造取得我们期望的最佳效果。
亚历山大与萨拉-石川佳纯和穆雷 西乐弗斯坦合作
- android高级组件使用(一)
百合不是茶
androidRatingBarSpinner
1、自动完成文本框(AutoCompleteTextView)
AutoCompleteTextView从EditText派生出来,实际上也是一个文本编辑框,但它比普通编辑框多一个功能:当用户输入一个字符后,自动完成文本框会显示一个下拉菜单,供用户从中选择,当用户选择某个菜单项之后,AutoCompleteTextView按用户选择自动填写该文本框。
使用AutoCompleteTex
- [网络与通讯]路由器市场大有潜力可挖掘
comsci
网络
如果国内的电子厂商和计算机设备厂商觉得手机市场已经有点饱和了,那么可以考虑一下交换机和路由器市场的进入问题.....
这方面的技术和知识,目前处在一个开放型的状态,有利于各类小型电子企业进入
&nbs
- 自写简单Redis内存统计shell
商人shang
Linux shell统计Redis内存
#!/bin/bash
address="192.168.150.128:6666,192.168.150.128:6666"
hosts=(${address//,/ })
sfile="staticts.log"
for hostitem in ${hosts[@]}
do
ipport=(${hostitem
- 单例模式(饿汉 vs懒汉)
oloz
单例模式
package 单例模式;
/*
* 应用场景:保证在整个应用之中某个对象的实例只有一个
* 单例模式种的《 懒汉模式》
* */
public class Singleton {
//01 将构造方法私有化,外界就无法用new Singleton()的方式获得实例
private Singleton(){};
//02 申明类得唯一实例
priva
- springMvc json支持
杨白白
json springmvc
1.Spring mvc处理json需要使用jackson的类库,因此需要先引入jackson包
2在spring mvc中解析输入为json格式的数据:使用@RequestBody来设置输入
@RequestMapping("helloJson")
public @ResponseBody
JsonTest helloJson() {
- android播放,掃描添加本地音頻文件
小桔子
最近幾乎沒有什麽事情,繼續鼓搗我的小東西。想在項目中加入一個簡易的音樂播放器功能,就像華為p6桌面上那麼大小的音樂播放器。用過天天動聽或者QQ音樂播放器的人都知道,可已通過本地掃描添加歌曲。不知道他們是怎麼實現的,我覺得應該掃描設備上的所有文件,過濾出音頻文件,每個文件實例化為一個實體,記錄文件名、路徑、歌手、類型、大小等信息。具體算法思想,
- oracle常用命令
aichenglong
oracledba常用命令
1 创建临时表空间
create temporary tablespace user_temp
tempfile 'D:\oracle\oradata\Oracle9i\user_temp.dbf'
size 50m
autoextend on
next 50m maxsize 20480m
extent management local
- 25个Eclipse插件
AILIKES
eclipse插件
提高代码质量的插件1. FindBugsFindBugs可以帮你找到Java代码中的bug,它使用Lesser GNU Public License的自由软件许可。2. CheckstyleCheckstyle插件可以集成到Eclipse IDE中去,能确保Java代码遵循标准代码样式。3. ECLemmaECLemma是一款拥有Eclipse Public License许可的免费工具,它提供了
- Spring MVC拦截器+注解方式实现防止表单重复提交
baalwolf
spring mvc
原理:在新建页面中Session保存token随机码,当保存时验证,通过后删除,当再次点击保存时由于服务器端的Session中已经不存在了,所有无法验证通过。
1.新建注解:
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
- 《Javascript高级程序设计(第3版)》闭包理解
bijian1013
JavaScript
“闭包是指有权访问另一个函数作用域中的变量的函数。”--《Javascript高级程序设计(第3版)》
看以下代码:
<script type="text/javascript">
function outer() {
var i = 10;
return f
- AngularJS Module类的方法
bijian1013
JavaScriptAngularJSModule
AngularJS中的Module类负责定义应用如何启动,它还可以通过声明的方式定义应用中的各个片段。我们来看看它是如何实现这些功能的。
一.Main方法在哪里
如果你是从Java或者Python编程语言转过来的,那么你可能很想知道AngularJS里面的main方法在哪里?这个把所
- [Maven学习笔记七]Maven插件和目标
bit1129
maven插件
插件(plugin)和目标(goal)
Maven,就其本质而言,是一个插件执行框架,Maven的每个目标的执行逻辑都是由插件来完成的,一个插件可以有1个或者几个目标,比如maven-compiler-plugin插件包含compile和testCompile,即maven-compiler-plugin提供了源代码编译和测试源代码编译的两个目标
使用插件和目标使得我们可以干预
- 【Hadoop八】Yarn的资源调度策略
bit1129
hadoop
1. Hadoop的三种调度策略
Hadoop提供了3中作业调用的策略,
FIFO Scheduler
Fair Scheduler
Capacity Scheduler
以上三种调度算法,在Hadoop MR1中就引入了,在Yarn中对它们进行了改进和完善.Fair和Capacity Scheduler用于多用户共享的资源调度
2. 多用户资源共享的调度
- Nginx使用Linux内存加速静态文件访问
ronin47
Nginx是一个非常出色的静态资源web服务器。如果你嫌它还不够快,可以把放在磁盘中的文件,映射到内存中,减少高并发下的磁盘IO。
先做几个假设。nginx.conf中所配置站点的路径是/home/wwwroot/res,站点所对应文件原始存储路径:/opt/web/res
shell脚本非常简单,思路就是拷贝资源文件到内存中,然后在把网站的静态文件链接指向到内存中即可。具体如下:
- 关于Unity3D中的Shader的知识
brotherlamp
unityunity资料unity教程unity视频unity自学
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,然后我们来看下Unity3D自带的60多个S
- CopyOnWriteArrayList vs ArrayList
bylijinnan
java
package com.ljn.base;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
/**
* 总述:
* 1.ArrayListi不是线程安全的,CopyO
- 内存中栈和堆的区别
chicony
内存
1、内存分配方面:
堆:一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式是类似于链表。可能用到的关键字如下:new、malloc、delete、free等等。
栈:由编译器(Compiler)自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中
- 回答一位网友对Scala的提问
chenchao051
scalamap
本来准备在私信里直接回复了,但是发现不太方便,就简要回答在这里。 问题 写道 对于scala的简洁十分佩服,但又觉得比较晦涩,例如一例,Map("a" -> List(11,111)).flatMap(_._2),可否说下最后那个函数做了什么,真正在开发的时候也会如此简洁?谢谢
先回答一点,在实际使用中,Scala毫无疑问就是这么简单。
- mysql 取每组前几条记录
daizj
mysql分组最大值最小值每组三条记录
一、对分组的记录取前N条记录:例如:取每组的前3条最大的记录 1.用子查询: SELECT * FROM tableName a WHERE 3> (SELECT COUNT(*) FROM tableName b WHERE b.id=a.id AND b.cnt>a. cnt) ORDER BY a.id,a.account DE
- HTTP深入浅出 http请求
dcj3sjt126com
http
HTTP(HyperText Transfer Protocol)是一套计算机通过网络进行通信的规则。计算机专家设计出HTTP,使HTTP客户(如Web浏览器)能够从HTTP服务器(Web服务器)请求信息和服务,HTTP目前协议的版本是1.1.HTTP是一种无状态的协议,无状态是指Web浏览器和Web服务器之间不需要建立持久的连接,这意味着当一个客户端向服务器端发出请求,然后We
- 判断MySQL记录是否存在方法比较
dcj3sjt126com
mysql
把数据写入到数据库的时,常常会碰到先要检测要插入的记录是否存在,然后决定是否要写入。
我这里总结了判断记录是否存在的常用方法:
sql语句: select count ( * ) from tablename;
然后读取count(*)的值判断记录是否存在。对于这种方法性能上有些浪费,我们只是想判断记录记录是否存在,没有必要全部都查出来。
- 对HTML XML的一点认识
e200702084
htmlxml
感谢http://www.w3school.com.cn提供的资料
HTML 文档中的每个成分都是一个节点。
节点
根据 DOM,HTML 文档中的每个成分都是一个节点。
DOM 是这样规定的:
整个文档是一个文档节点
每个 HTML 标签是一个元素节点
包含在 HTML 元素中的文本是文本节点
每一个 HTML 属性是一个属性节点
注释属于注释节点
Node 层次
- jquery分页插件
genaiwei
jqueryWeb前端分页插件
//jquery页码控件// 创建一个闭包 (function($) { // 插件的定义 $.fn.pageTool = function(options) { var totalPa
- Mybatis与Ibatis对照入门于学习
Josh_Persistence
mybatisibatis区别联系
一、为什么使用IBatis/Mybatis
对于从事 Java EE 的开发人员来说,iBatis 是一个再熟悉不过的持久层框架了,在 Hibernate、JPA 这样的一站式对象 / 关系映射(O/R Mapping)解决方案盛行之前,iBaits 基本是持久层框架的不二选择。即使在持久层框架层出不穷的今天,iBatis 凭借着易学易用、
- C中怎样合理决定使用那种整数类型?
秋风扫落叶
c数据类型
如果需要大数值(大于32767或小于32767), 使用long 型。 否则, 如果空间很重要 (如有大数组或很多结构), 使用 short 型。 除此之外, 就使用 int 型。 如果严格定义的溢出特征很重要而负值无关紧要, 或者你希望在操作二进制位和字节时避免符号扩展的问题, 请使用对应的无符号类型。 但是, 要注意在表达式中混用有符号和无符号值的情况。
&nbs
- maven问题
zhb8015
maven问题
问题1:
Eclipse 中 新建maven项目 无法添加src/main/java 问题
eclipse创建maevn web项目,在选择maven_archetype_web原型后,默认只有src/main/resources这个Source Floder。
按照maven目录结构,添加src/main/ja
- (二)androidpn-server tomcat版源码解析之--push消息处理
spjich
javaandrodipn推送
在 (一)androidpn-server tomcat版源码解析之--项目启动这篇中,已经描述了整个推送服务器的启动过程,并且把握到了消息的入口即XmppIoHandler这个类,今天我将继续往下分析下面的核心代码,主要分为3大块,链接创建,消息的发送,链接关闭。
先贴一段XmppIoHandler的部分代码
/**
* Invoked from an I/O proc
- 用js中的formData类型解决ajax提交表单时文件不能被serialize方法序列化的问题
中华好儿孙
JavaScriptAjaxWeb上传文件FormData
var formData = new FormData($("#inputFileForm")[0]);
$.ajax({
type:'post',
url:webRoot+"/electronicContractUrl/webapp/uploadfile",
data:formData,
async: false,
ca
- mybatis常用jdbcType数据类型
ysj5125094
mybatismapperjdbcType
MyBatis 通过包含的jdbcType
类型
BIT FLOAT CHAR