我们先看下 HBase 的写流程:
通常 MapReduce 在写HBase时使用的是 TableOutputFormat 方式,在reduce中直接生成put对象写入HBase,该方式在大数据量写入时效率低下(HBase会block写入,频繁进行flush,split,compact等大量IO操作),并对HBase节点的稳定性造成一定的影响(GC时间过长,响应变慢,导致节点超时退出,并引起一系列连锁反应),而HBase支持 bulk load 的入库方式,它是利用hbase的数据信息按照特定格式存储在hdfs内这一原理,直接在HDFS中生成持久化的HFile数据格式文件,然后上传至合适位置,即完成巨量数据快速入库的办法。配合mapreduce完成,高效便捷,而且不占用region资源,增添负载,在大数据量写入时能极大的提高写入效率,并降低对HBase节点的写入压力。
通过使用先生成HFile,然后再BulkLoad到Hbase的方式来替代之前直接调用HTableOutputFormat的方法有如下的好处:
(1)消除了对HBase集群的插入压力
(2)提高了Job的运行速度,降低了Job的执行时间
目前此种方式仅仅适用于只有一个列族的情况,在新版 HBase 中,单列族的限制会消除。
下面给出相应的范例代码:
import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.KeyValue; import org.apache.hadoop.hbase.client.HTable; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.mapreduce.HFileOutputFormat; import org.apache.hadoop.hbase.mapreduce.KeyValueSortReducer; import org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles; import org.apache.hadoop.hbase.util.Bytes; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class GeneratePutHFileAndBulkLoadToHBase { public static class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> { private Text wordText=new Text(); private IntWritable one=new IntWritable(1); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // TODO Auto-generated method stub String line=value.toString(); String[] wordArray=line.split(" "); for(String word:wordArray) { wordText.set(word); context.write(wordText, one); } } } public static class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> { private IntWritable result=new IntWritable(); protected void reduce(Text key, Iterable<IntWritable> valueList, Context context) throws IOException, InterruptedException { // TODO Auto-generated method stub int sum=0; for(IntWritable value:valueList) { sum+=value.get(); } result.set(sum); context.write(key, result); } } public static class ConvertWordCountOutToHFileMapper extends Mapper<LongWritable, Text, ImmutableBytesWritable, Put> { @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // TODO Auto-generated method stub String wordCountStr=value.toString(); String[] wordCountArray=wordCountStr.split("\t"); String word=wordCountArray[0]; int count=Integer.valueOf(wordCountArray[1]); //创建HBase中的RowKey byte[] rowKey=Bytes.toBytes(word); ImmutableBytesWritable rowKeyWritable=new ImmutableBytesWritable(rowKey); byte[] family=Bytes.toBytes("cf"); byte[] qualifier=Bytes.toBytes("count"); byte[] hbaseValue=Bytes.toBytes(count); // Put 用于列簇下的多列提交,若只有一个列,则可以使用 KeyValue 格式 // KeyValue keyValue = new KeyValue(rowKey, family, qualifier, hbaseValue); Put put=new Put(rowKey); put.add(family, qualifier, hbaseValue); context.write(rowKeyWritable, put); } } public static void main(String[] args) throws Exception { // TODO Auto-generated method stub Configuration hadoopConfiguration=new Configuration(); String[] dfsArgs = new GenericOptionsParser(hadoopConfiguration, args).getRemainingArgs(); //第一个Job就是普通MR,输出到指定的目录 Job job=new Job(hadoopConfiguration, "wordCountJob"); job.setJarByClass(GeneratePutHFileAndBulkLoadToHBase.class); job.setMapperClass(WordCountMapper.class); job.setReducerClass(WordCountReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.setInputPaths(job, new Path(dfsArgs[0])); FileOutputFormat.setOutputPath(job, new Path(dfsArgs[1])); //提交第一个Job int wordCountJobResult=job.waitForCompletion(true)?0:1; //第二个Job以第一个Job的输出做为输入,只需要编写Mapper类,在Mapper类中对一个job的输出进行分析,并转换为HBase需要的KeyValue的方式。 Job convertWordCountJobOutputToHFileJob=new Job(hadoopConfiguration, "wordCount_bulkload"); convertWordCountJobOutputToHFileJob.setJarByClass(GeneratePutHFileAndBulkLoadToHBase.class); convertWordCountJobOutputToHFileJob.setMapperClass(ConvertWordCountOutToHFileMapper.class); //ReducerClass 无需指定,框架会自行根据 MapOutputValueClass 来决定是使用 KeyValueSortReducer 还是 PutSortReducer //convertWordCountJobOutputToHFileJob.setReducerClass(KeyValueSortReducer.class); convertWordCountJobOutputToHFileJob.setMapOutputKeyClass(ImmutableBytesWritable.class); convertWordCountJobOutputToHFileJob.setMapOutputValueClass(Put.class); //以第一个Job的输出做为第二个Job的输入 FileInputFormat.addInputPath(convertWordCountJobOutputToHFileJob, new Path(dfsArgs[1])); FileOutputFormat.setOutputPath(convertWordCountJobOutputToHFileJob, new Path(dfsArgs[2])); //创建HBase的配置对象 Configuration hbaseConfiguration=HBaseConfiguration.create(); //创建目标表对象 HTable wordCountTable =new HTable(hbaseConfiguration, "word_count"); HFileOutputFormat.configureIncrementalLoad(convertWordCountJobOutputToHFileJob,wordCountTable); //提交第二个job int convertWordCountJobOutputToHFileJobResult=convertWordCountJobOutputToHFileJob.waitForCompletion(true)?0:1; //当第二个job结束之后,调用BulkLoad方式来将MR结果批量入库 LoadIncrementalHFiles loader = new LoadIncrementalHFiles(hbaseConfiguration); //第一个参数为第二个Job的输出目录即保存HFile的目录,第二个参数为目标表 loader.doBulkLoad(new Path(dfsArgs[2]), wordCountTable); //最后调用System.exit进行退出 System.exit(convertWordCountJobOutputToHFileJobResult); } }
比如原始的输入数据的目录为:/rawdata/test/wordcount/20131212
中间结果数据保存的目录为:/middata/test/wordcount/20131212(1)HFile方式在所有的加载方案里面是最快的,不过有个前提——数据是第一次导入,表是空的。如果表中已经有了数据。HFile再导入到hbase的表中会触发split操作。
(2)最终输出结果,无论是map还是reduce,输出部分key和value的类型必须是: < ImmutableBytesWritable, KeyValue>或者< ImmutableBytesWritable, Put>。
否则报这样的错误:
java.lang.IllegalArgumentException: Can't read partitions file ... Caused by: java.io.IOException: wrong key class: org.apache.hadoop.io.*** is not class org.apache.hadoop.hbase.io.ImmutableBytesWritable(3)最终输出部分,Value类型是KeyValue 或Put,对应的Sorter分别是KeyValueSortReducer或PutSortReducer,这个 SorterReducer 可以不指定,因为源码中已经做了判断:
if (KeyValue.class.equals(job.getMapOutputValueClass())) { job.setReducerClass(KeyValueSortReducer.class); } else if (Put.class.equals(job.getMapOutputValueClass())) { job.setReducerClass(PutSortReducer.class); } else { LOG.warn("Unknown map output value type:" + job.getMapOutputValueClass()); }(4) MR例子中job.setOutputFormatClass(HFileOutputFormat.class); HFileOutputFormat只适合一次对单列族组织成HFile文件,多列簇需要起多个 job,不过新版本的 Hbase 已经解决了这个限制。
(6)最后一个 Reduce 没有 setNumReduceTasks 是因为,该设置由框架根据region个数自动配置的。
(7)下边配置部分,注释掉的其实写不写都无所谓,因为看源码就知道configureIncrementalLoad方法已经把固定的配置全配置完了,不固定的部分才需要手动配置。
public class HFileOutput { //job 配置 public static Job configureJob(Configuration conf) throws IOException { Job job = new Job(configuration, "countUnite1"); job.setJarByClass(HFileOutput.class); //job.setNumReduceTasks(2); //job.setOutputKeyClass(ImmutableBytesWritable.class); //job.setOutputValueClass(KeyValue.class); //job.setOutputFormatClass(HFileOutputFormat.class); Scan scan = new Scan(); scan.setCaching(10); scan.addFamily(INPUT_FAMILY); TableMapReduceUtil.initTableMapperJob(inputTable, scan, HFileOutputMapper.class, ImmutableBytesWritable.class, LongWritable.class, job); //这里如果不定义reducer部分,会自动识别定义成KeyValueSortReducer.class 和PutSortReducer.class job.setReducerClass(HFileOutputRedcuer.class); //job.setOutputFormatClass(HFileOutputFormat.class); HFileOutputFormat.configureIncrementalLoad(job, new HTable( configuration, outputTable)); HFileOutputFormat.setOutputPath(job, new Path()); //FileOutputFormat.setOutputPath(job, new Path()); //等同上句 return job; } public static class HFileOutputMapper extends TableMapper<ImmutableBytesWritable, LongWritable> { public void map(ImmutableBytesWritable key, Result values, Context context) throws IOException, InterruptedException { //mapper逻辑部分 context.write(new ImmutableBytesWritable(Bytes()), LongWritable()); } } public static class HFileOutputRedcuer extends Reducer<ImmutableBytesWritable, LongWritable, ImmutableBytesWritable, KeyValue> { public void reduce(ImmutableBytesWritable key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException { //reducer逻辑部分 KeyValue kv = new KeyValue(row, OUTPUT_FAMILY, tmp[1].getBytes(), Bytes.toBytes(count)); context.write(key, kv); } } }
1、Hbase几种数据入库(load)方式比较
http://blog.csdn.net/kirayuan/article/details/6371635
2、MapReduce生成HFile入库到HBase及源码分析
http://blog.pureisle.net/archives/1950.html
3、MapReduce生成HFile入库到HBase
http://shitouer.cn/2013/02/hbase-hfile-bulk-load/