derivable and holomorphic

sqwswwEEEeUntitled Document

复习提纲

  1. stereographic projection (definition and the way to find a projecting point)
  2. calculate square root for a given complex number
  3. triangle inequality
  4. differentiation of a holomorphic function. (definition, Cauchy-Riemann equation, method to calculate a derivative for a given function , find a harmonic conjugate for a given real part)
  5. Maximal muduli theorem (proof is not required, just need know how to use it )
  6. write a rational function into a sum of partial fractions
  7. linear transformation (cross ratio, the way to find a center of a circle decided by three points, how to decide if four points are on a same circle, symmetric points, reflection with respect to a circle, determine a linear transformation which can realize some transformations between circles)
  • 疑问:哪些函数连续,连续引申出来的性质有哪些?
  • 疑问:Prove fundamental theorem of algbra using maximum mudulii theorem
  • 疑问:extended complex plane: C ∪ {∞} |z|>1/ε is the neiborhood of ∞
  • Riemann sphere and stereographic projection.


  • A function f is continous at piont Zo if all three of the following conditions satisfied: (虽然只是一个点,但是实际上却包含了邻域|Z-Zo|<ζ)< /p>

    1. lim f(Z) exists
    2. f(Zo) exists
    3. lim f(Z) = f(Zo)


  • A function of complex variable is said to be continous in the region R if it is continous at each point in R.

    1. two functions are continous at a point,
      1. their sum and product are also continous at that point
      2. their quotient is continous at any such point if the denomonator is not zero there.
      3. a polynomial is continous in the entire plane.


  • theorem1:两个连续函数的复合仍然是连续的。

  • theorem2; 如果f(Z) 在点Zo连续并且不为0,那么在该店的某个邻域有f(Z)≠0。

  • theorem3: 如果f(Z)=u(x,y) + iv(x,y)中的分量函数u和v在点Zo=(xo,yo)连续,那么f也在该点连续。反之,也成立。

  • theorem4:设R是一个有界闭区间,如果函数f在整个R上连续,那么存在一个非负实数M,使得
      |f(Z)|≤M 对R中所有的点Z成立,其中等号至少对一个点Z成立
    

  • Derivatives:let f be a function whose domain of definition contains a neighborhood |Z-Zo|<ε of a point Zo. The derivative of f at Zo is the limit
      f'(Zo)=lim (f(Z)-f(Zo))/(Z-Zo)
    
    or defined as
      f'(Zo)=lim (f(Zo+△Z)-f(Zo))/△Z
    
    and function f is said to be defferentiable at Zo when f'(Zo) exist.
  • 复变函数有与实函数相似的求导性质。
      especially, F(Z)=g(f(Z)) has a derivative at Zo, and F'(Zo)=g'(f(Zo))f'(Zo)
    
  • Cauchy-riemann equation; if function f(Z)=u(x,y)+v(x,y) is derivable at Zo, then
      f'(Zo)=Ux(xo.yo)+iVx(xo,yo)
      f'(Zo)=-iUy(xo,yo)+Vy(xo,yo) 
    
    by the uniqueness of limits, both the equation provide neccessary conditions for existance of f'(Zo)
      Ux(xo,yo)=Vy(xo,yo) and Uy(xo,yo)=-Vx(xo,yo)
    
  • theorem: 设 f(Z)=u(x,y) + iv(x,y) 并且f'(Z) 在点Zo=xo+iyo存在,那么分量u和v的一届偏导数在点(xo,yo)存在,且在该店满足柯西-黎曼方程:
      Ux=Vy, Uy=-Vx
      并且 f'(Zo)=Ux+ iVx
    
  • Sufficient consitions for Differentiability; 设函数 f(Z)=u(x,y)+iv(x,y)在点Zo=xo+iyo 的某个ε邻域中处处有定义,并且

    1. 分量u和v关于x和y的一阶偏导数在点Zo=xo+iyo的ε邻域内处处存在。
    2. 这些一阶偏导数在点(xo,yo)连续且在点(xo,yo)满足柯西黎曼方程, 那么f'(Zo)存在。
  • 总结:

  1. 如果要在某一点dirivable抑或是differentiable,那么需要函数在这点周围有定义,并且分量关于x,y的一阶偏导也要存在并且在周围连续,这样还不能保证derivable,必须还要让这一点满足柯西黎曼方程。
  2. 还有第二种方法判断,便是直接用derivative的定义去求函数在那一点的导数,但这种方法基本不可行,因为我们无法去验证它在每一个方向上的极限都相等。倒是这种方法适合证明导数的不存在。
  3. 特殊函数,比如ponynomials可以直接用它本身的性质去求。
  4. 至于holomorphic function的定义,如果说 "holomorphic at a point Zo", means not just differentiable at Zo, but differentiable everywhere within some neighborhood of Zo in the complex plane.

你可能感兴趣的:(derivable and holomorphic)