我们如何知道软件设计的优劣呢?以下是一些拙劣设计的症状,当软件出现下面任何一种气味时,就表明软件正在腐化。
僵化性
僵化是指难以对软件进行改动,即使是简单的改动。如果单一的改动会导致有依赖关系的模块中的连锁改动,那么设计就是僵化的。必须要改动的模块越多,设计就越僵化。
大部分开发人员都遇到这样的情况:他们对被要求进行一个看似简单的改动,当他实际进行改动时,才发现有许多改动带来的影响自己并没有预测到。最后,改动所花费的时间要远比初始估算长。他会重复软件开发人员惯用的悲叹:“它比我想象的要复杂得多!”
脆弱性
脆弱性是指,在进行一个改动时,程序的许多地方就可能出现问题。常常是,出现新问题的地方与改动的地方并没有概念上的关联。要修正这些问题就又会引出新的问题,从而使软件开发团队就像一只不停追逐自己尾巴的狗一样。
牢固性
牢固性是指,设计中包含了对其他系统有用的部分,但是要把这些部分从系统中分离出来需要的努力和风险是巨大的。这是一件令人遗憾的事,但却是非常常见。
粘滞性
当面临一个改动时,开发人员常常会发现会有多种改动的方法。其中,一些会保持设计;而另外一些会破坏设计(也就是生硬的手法)。当那些可以保持系统设计 的方法比那些生硬手法更难应用时,就表明设计具有高的粘滞性。做错误的事情是容易的,但是做正确的事情却很难。这样就很难保持项目中的软件设计。
不必要的复杂性
如果设计中包含当前没有用的组成部分,它就含有不必要的复杂性。当开发人员预测需求的变化,并在软件中放置了处理潜在变化的代码时,常常会出现这种情况。起初,这样看起来是一件好事。毕竟,为将来的变化做准备会保持代码的灵活性,而且可以避免以后再进行痛苦的改动。
糟糕的是,结果常常正好相反。为过多的可能性作准备,致使设计中含有绝不会用到的结构,从而变得混乱。一些准备也许会带来回报,但是更多的不会。期间,设计背负着这些不会用到的部分,使软件变得复杂,而且难以理解。
不必要的重复
复制(Copy)和粘贴(paste)也许是有用的文本编辑(text-editing)操作,但是它们却是灾难性的代码编辑(code-editing)操作。时常,软件系统都是构建于众多的重复代码片断之上。
当系统中有重复代码时,对系统进行改动会变得困难。在一个重复的代码体中发现的错误必须要在每个重复体中一一修正。不过,由于每个重复体之间都有细微的差别,所以修正的方式也不总是相同的。
晦涩性
晦涩性是指,代码模块难以理解。当开发人员最初编写一个模块时,代码对于他们来说看起来也许是清晰的。这是由于他们使自己专注于代码的编写,并且他们对 于代码非常熟识。在熟识减退以后,他们或许会回过头来再去看那个模块,并想知道他们为什么会编写出如此糟糕的代码。为了防止这种情况发生,开发人员必须要 站在代码阅读者的位置,共同努力对他们的代码进行重构。
什么激发了软件的腐化?答案是需求的变化。由于需求没有按照初始设计预见的方式进行变化,从而导致了设计的退化。通常,改动都很急迫,并且进行改动的开发人员对原始的设计思路并不熟识。因而,虽然对设计的改动可以工作,但是它却以某种方式违反了原始的设计。随着改动的不断进行,这些违反不断地积累,设计开始出现臭味。
然而,我们不能因为设计的退化而责怪需求的变化。作为开发人员,我们对需求变化有非常好的了解。事实上,我们中的大多数人都认识到需求是项目中最不稳定的因 素。如果我们的设计由于持续、大量的需求变化而失败,那就表明我们的设计和实践本身是有缺陷的。我们必须要设法找到一种方法,使得设计对于变化具有弹性, 并且应用一些实践来防止设计腐化。
老板给你的任务。。。。。。
老板一大早就来找你,要你务必在三个星期内完成这样一个程序:从键盘读入字符,并输出到打印机。
你是一个很有效率的开发人员,仅仅用了两个星期就把程序完成了(Copy V1):
void Copy()
{
int c;
While ((c = RdKbd()) !=EOF)
WrtPrt(c);
}
你把程序编译好后,安装在公司里的234个工作站。你的程序运行良好,3个月内一点问题都没有,于是同事都齐声赞扬你,老板也开始赏识你。你自己也开始飘飘然了。
需求在变化。。。。。。
三个月后的某天的某个上午,老板又来找你,说有时希望能从纸带读入机读入信息。你咬牙切齿,翻着白眼。你想知道为何人们总是改变需求。你的程序不是为纸 带读入机设计的!你警告老板,这样的改变会破坏程序的优雅。不过老板怒视了你一下,你又立刻低下了头,开始想解决方案了。
因为程序已经 安装到数百个工作站,你不能改变Copy程序的接口。改变接口会导致长时间的重新编译和重新测试。单单系统测试工程师就会痛恨你,更别提配置控制组的那7 个家伙了。并且过程控制部门会用专门的一天时间来对所有调用了Copy的模块进行各种各样的代码评审。但是这也难不到你,你巧妙地完成了任务(Copy V2):
// remember to reset this flag
bool ptFlag = false;
void void Copy()
{
int c;
While ((c = (ptFlag ? Rdpt() : RdKbd())) !=EOF)
WrtPrt(c);
}
想让Copy程序从纸带读入机读入信息的调用者必须把ptFlag设置为true,然后再调用Copy时,它就能正确地从纸带读入机读入信息。一旦 Copy调用返回,调用者必须重新设置ptFlag,否则接下来的调用者就会错误地从纸带读入机而不是键盘读入信息。为了提醒程序员重设这个标志,你增加 了一个适当的注释。
同样,你的程序一发布,就获得了好评。甚至比以前更成功,一大群渴望的程序员正在等待机会去使用它。生活是美好的。
得寸进尺。。。。。。
美好的日子过得总是太快,几个礼拜后的那天早上老板又来光顾你,他说:客户有时希望Copy程序可以输出到纸带穿孔机上。
客户!他们总是毁坏你的设计。如果没有客户,编写软件会变得容易得多。
你再次警告老板,如果继续以这样可怕的速度变更需求,那么在年底前软件就会变得难以维护了。老板心照不宣地点点头,接着告诉你无论如何都要进行这次改动。
这次的改动和上次相似,只不过需要另外一个全局变量,下面的程序展示了你努力后的卓越成果(Copy V3):
// remember to reset these flags
bool ptFlag = false;
bool punchFlag = false;
void Copy()
{
int c;
While ((c = (ptFlag ? Rdpt() : RdKbd())) != EOF))
punchFlag ? WrtPunch(c) : WrtPrc(c);
}
尤其让你感到骄傲的是,你还记得去修改注释。虽然,你对程序的结构开始变得摇摇欲坠感到担心。任何对于输入或者输出设备的再次变更肯定会迫使你对 while循环的条件判断进行彻底的重新组织。但是毕竟你的程序还能正常工作。不过现在已经到达你承受的底线了,如果可恶的客户再次通过改变需求来破坏你 的设计你就立刻走人。你下定了这个决心。
你的崩溃。。。。。。
很不幸,没过两个星期。那天早上你刚到办公室还没坐下,老板又跑了进来,看他焦急的神态你猜得出他已经等了你3个小时了。老板开门见山地说:客户有时希望Copy程序可以从文件中输入……
没等他把话说完,你已经冲出了办公室,消失在茫茫的晨曦当中。
2.1 运用面向对象设计原则设计Copy程序
让我们换个场景来处理上面的情况如何?~^_^~
1、 当老板第一次给你任务时,你还没预计到任何需求的变化,所以一开始编写的代码和“Copy V1”完全一样。
2、 在老板要求你使程序可以从纸带读入机中读入信息时,你作出了下列的反应:
class Reader
{
public:
virtual int read() = 0;
};
class KeyBordreader : public Reader
{
public:
virtual int read() { return RdKbd();}
}
KeyBordReader GdefaultReader;
void Copy(Reader& reader = GdefaultReader)
{
int c;
While((c = reader.read()) != EOF)
WrtPrt(c);
}
3、 在老板要求你使程序可以输出到纸带穿孔机时,你作出了下列的反应:
class Reader
{
public:
virtual int read() = 0;
};
class KeyBordreader : public Reader
{
public:
virtual int read() { return RdKbd();}
}
class Writer
{
public:
virtual void writ(int c) = 0;
};
class PrinterWriter : public Writer
{
public:
virtual void write(int c) { WrtPrc(c);}
}
KeyBordReader GdefaultReader;
PrinterWriter GdefaultWriter;
void Copy(Reader& reader = GdefaultReader, Writer& writer)
{
int c;
While((c = reader.read()) != EOF)
writer.write(c);
}
在要实现新需求时,你抓住这次机会去改进设计,以便设计对于将来的同类变化具有弹性,而不是设法去给设计打补丁。从第一次改进开始,无论何时老板要求一种 新的输入设备,你都能以不导致Copy程序退化的方式作出响应;从第二次改进开始,无论何时老板要求一种新的输入或输出设备,你也能以不导致Copy程序 退化的方式作出响应。
但请注意,你不是一开始设计该模块时就试图预测程序将如何变化。相反,你是以最简单的方式编写的。直到需求最终确实变化时,你才修改模块的设计,使之对该种变化保持弹性。
注:你的程序遵守了面向对象程序设计中的开放-封闭原则(OCP)和依赖倒置原则(DIP)。[见以下章节]
设计的腐化是一种症状,是可以主观(如果不能客观的话)进行量度的。腐化常常是由于违法了设计原则中的一个或多个所导致的。例如,僵化性常常是由于对开放-封闭原则(OCP)不够关注的结果。
开发团队应该运用相应的设计原则来去除腐化。但当软件还没出现腐化时不应该应用这些原则。仅仅因为是一个原则就无条件的去遵循它的做法是错误的。这些原 则不是可以随意在系统中到处喷洒的香水。过分遵循这些原则会导致不必要的复杂性(Needless Complexity)的设计臭味,变成另一种腐化。
下一章:面向对象软件设计原则(三) —— 软件实体的设计原则