思路:
以y的值进行离散化
根据x的值 对每一条y轴边进行处理,如果是"左边"则插入,是"右边"则删除。
/* 扫描线+线段树+离散化 求多个矩形的周长 */ #include<stdio.h> #include<string.h> #include<stdlib.h> #include<algorithm> #include<iostream> #include<queue> #include<stack> #include<math.h> #include<map> using namespace std; const int maxn = 5005; const int maxm = 10010; struct SegTree{ int l,r; int len;//区间代表的长度 int segnum;//区间被分成的段数 int cover;//区间被覆盖的次数 int sum;//区间被覆盖的总长度 bool lcover,rcover; }ST[ maxm<<2 ]; struct Line{ int st,ed,x;//竖边的两个y值 bool InOut;//是否为左边 bool operator < (Line L) const{ return x<L.x; } }; Line yLine[ maxm ]; int yIndex[ maxm ]; int n; void build( int L,int R,int n ){ ST[ n ].l = L; ST[ n ].r = R; ST[ n ].len = yIndex[ R ]-yIndex[ L ]; ST[ n ].sum = ST[ n ].cover = ST[ n ].segnum = 0; ST[ n ].lcover = ST[ n ].rcover = false; if( R-L>1 ){ int mid = (L+R)/2; build( L,mid,2*n ); build( mid,R,2*n+1 ); } return ; } void Update_Len( int n ){ if( ST[n].cover>0 ){ ST[n].sum = ST[n].len; } else if( ST[n].r-ST[n].l>1 ){ ST[n].sum = ST[2*n].sum+ST[2*n+1].sum; } else ST[n].sum = 0; } void Update_Segnum( int n ){ if( ST[n].cover>0 ){ ST[n].lcover = ST[n].rcover = true; ST[n].segnum = 1; } else if( ST[n].r-ST[n].l>1 ){ ST[n].lcover = ST[2*n].lcover; ST[n].rcover = ST[2*n+1].rcover; ST[n].segnum = ST[2*n].segnum+ST[2*n+1].segnum-ST[2*n].rcover*ST[2*n+1].lcover; } else{ ST[n].segnum = 0; ST[n].lcover = ST[n].rcover = false; } } void PushUp ( int n ){ Update_Len( n ); Update_Segnum( n ); } void Insert( int left,int right,int n ){ if( ST[ n ].l==left&&ST[ n ].r==right ){ ST[ n ].cover++; } else { int mid = (ST[ n ].l+ST[ n ].r)/2; if( right<=mid ) Insert( left,right,2*n ); else if( left>=mid ) Insert( left,right,2*n+1 ); else{ Insert( left,mid,2*n ); Insert( mid,right,2*n+1 ); } } PushUp( n ); } void Delete( int left,int right,int n ){ if( ST[ n ].l==left&&ST[ n ].r==right ){ ST[ n ].cover--; } else { int mid = (ST[ n ].l+ST[ n ].r)/2; if( right<=mid ) Delete( left,right,2*n ); else if( left>=mid ) Delete( left,right,2*n+1 ); else{ Delete( left,mid,2*n ); Delete( mid,right,2*n+1 ); } } PushUp( n ); } int GetIndex( int value ,int cnt ){ return lower_bound(yIndex,yIndex+cnt,value )-yIndex; } int main(){ while( scanf("%d",&n)==1 ){ int cnt = 0; int x1,y1,x2,y2; for( int i=0;i<n;i++ ){ scanf("%d%d%d%d",&x1,&y1,&x2,&y2); yLine[ 2*i ].x = x1; yLine[ 2*i+1 ].x = x2; yLine[ 2*i ].st = yLine[ 2*i+1 ].st = y1; yLine[ 2*i ].ed = yLine[ 2*i+1 ].ed = y2; yLine[ 2*i ].InOut = true; yLine[ 2*i+1 ].InOut = false; yIndex[ 2*i ] = y1; yIndex[ 2*i+1 ] = y2; } sort( yIndex,yIndex+2*n ); sort( yLine,yLine+2*n ); for( int i=1;i<2*n;i++ ){ if( yIndex[i]!=yIndex[i-1] ) yIndex[cnt++] = yIndex[i-1]; } yIndex[cnt++] = yIndex[2*n-1]; build( 0,cnt-1,1 ); int Ans = 0; int PreSum = 0;; for( int i=0;i<2*n-1;i++ ){ if( yLine[i].InOut ){ Insert( GetIndex(yLine[i].st,cnt),GetIndex(yLine[i].ed,cnt),1 ); } else{ Delete( GetIndex(yLine[i].st,cnt),GetIndex(yLine[i].ed,cnt),1 ); } Ans += ST[1].segnum*2*(yLine[i+1].x-yLine[i].x); Ans += abs(ST[1].sum-PreSum); PreSum = ST[1].sum; } Delete( GetIndex(yLine[2*n-1].st,cnt),GetIndex(yLine[2*n-1].ed,cnt),1 ); Ans += abs(ST[1].sum-PreSum); printf("%d\n",Ans); } return 0; }