- 基于知识图谱的个性化智能教学推荐系统(文档+源码)
「已注销」
python知识图谱人工智能pythonpygamepyqtdash
目录摘要Abstract目录第1章绪论1.1研究背景及意义1.2国内外研究现状1.2.1知识图谱1.2.2个性化推荐系统1.3本文研究内容及创新点1.4全文组织结构第2章相关理论与技术概述2.1知识图谱2.1.1知识图谱的介绍与发展2.1.2知识图谱的构建2.3协同过滤推荐算法2.2.1推荐算法概述2.2.2Pearson相关系数2.2.3Spearman相关系数2.4Bert模型和Albert模
- 基于协同过滤推荐算法的景点票务数据系统(python-计算机毕设)
计算机程序设计(接毕设)
推荐算法机器学习毕业设计python人工智能
摘要IABSTRACTII第1章引言1研究背景及意义1研究背景1研究意义1国内外研究现状2智慧旅游3旅游大数据3研究内容4本章小结4第2章相关技术概述5基于内容的推荐算法5基于内容的推荐算法原理5基于内容的推荐算法实现5协同过滤推荐算法6协同过滤算法原理6协同过滤算法实现7SpringBoot框架9SpringBoot简介9SpringBoot特性10SpringBoot工作原理10Vue.js框
- python 基于混合式推荐算法的学术论文投稿系统
mosquito_lover1
python知识图谱
基于混合式推荐算法的学术论文投稿系统是一个结合多种推荐技术(如基于内容的推荐、协同过滤、知识图谱等)来为研究者推荐合适期刊或会议投稿的系统。以下是实现该系统的关键步骤和Python代码示例。系统设计思路1.数据收集与预处理:-收集论文数据(标题、摘要、关键词、作者信息等)。-收集期刊/会议数据(领域、主题、影响因子、投稿要求等)。-对文本数据进行预处理(分词、去停用词、向量化等)。2.推荐算法设计
- 算法在各领域的广泛应用:100 个实例全解析
软件职业规划
AI&模型算法
一、互联网与信息技术领域搜索引擎算法:如谷歌的PageRank算法,用于根据网页的重要性和相关性对搜索结果进行排序,帮助用户快速找到所需信息。推荐系统算法:例如亚马逊和Netflix使用的协同过滤算法。根据用户的历史行为(购买、观看记录等)和其他相似用户的偏好,为用户推荐可能感兴趣的产品或内容。社交网络分析算法:用于分析社交网络中的用户关系,如Facebook通过算法发现用户的好友推荐、社区划分等
- Python构建基于协同过滤的推荐系统:从理论到实践
清水白石008
pythonPython题库python开发语言
构建基于协同过滤的推荐系统:从理论到实践推荐系统在现代应用中无处不在,从电商平台的商品推荐到流媒体服务的内容推荐,推荐系统极大地提升了用户体验。本文将详细介绍如何使用Python构建一个基于协同过滤算法的推荐系统,内容涵盖理论基础、数据处理、算法实现以及实际应用。一、推荐系统概述推荐系统主要分为三类:基于内容的推荐、基于协同过滤的推荐和混合推荐系统。本文重点介绍基于协同过滤的推荐系统。协同过滤(C
- Django 中的算法应用与实现
岱宗夫up
教学sqlite数据库pythondjangoopencv
Django中的算法应用与实现在Django开发中,算法的应用可以极大地扩展Web应用的功能和性能。从简单的数据处理到复杂的机器学习模型,Django都可以作为一个强大的后端框架来支持这些算法的实现。本文将介绍几种常见的算法及其在Django中的使用方法。1\.协同过滤算法1.1算法简介协同过滤是一种常用的推荐系统算法,通过分析用户的行为数据(如评分、浏览历史等),为用户推荐他们可能感兴趣的内容。
- 融合多源高校画像数据与协同过滤算法的高考择校推荐系统[Java]—计算机毕业设计源码+LW文档
qq_375279829
高考javaspringbootjavascriptvue.jsspring
摘要随着信息技术的飞速发展和教育数据的日益丰富,高考择校推荐系统已成为帮助学生和家长做出明智选择的重要工具。本文介绍了一种基于SpringBoot的融合多源高校画像数据与协同过滤算法的高考择校推荐系统。该系统通过整合高校的多源画像数据,如地理位置、学科实力、师资力量、就业情况等,结合协同过滤算法,为学生提供个性化的高校推荐。本文详细阐述了系统的设计与实现过程,包括技术选型、需求分析、系统设计、功能
- 数据挖掘与数据分析
「已注销」
数据分析数据挖掘数据分析人工智能
目录数据挖掘与数据分析一.数据的本质二.什么是数据挖掘和数据分析三.数据挖掘和数据分析有什么区别案例及应用1.基于分类模型的案例2.基于预测模型的案例3.基于关联分析的案例4.基于聚类分析的案例5.基于异常值分析的案例6.基于协同过滤的案例7.基于社会网络分析的案例8.基于文本分析的案例结语数据挖掘与数据分析在当今数字化的时代,数据成为了我们生活和工作中不可或缺的一部分。数据的价值在于其所蕴含的信
- spark1.x和spark2.x的区别
xuxu1116
sparkspark1.x与2.x的区别
spark2.x版本相对于1.x版本,有挺多地方的修改,1Spark2ApacheSpark作为编译器:增加新的引擎Tungsten执行引擎,比Spark1快10倍2ml做了很大的改进,支持协同过滤http://spark.apache.org/docs/latest/ml-collaborative-filtering.html3spark2org.apache.spark.sql加了Spark
- 微信小程序 python PHP java nodejs物业管理系统azs8s
豆包程序员
微信小程序pythonphp
文章目录本项目支持的技术栈具体实现截图开发技术介绍可定制亮点创新点->协同过滤算法进度安排及各阶段主要任务技术路线或研究方法可定制亮点创新点->普通算法推荐可定制亮点创新点->最短路线推荐算法可定制亮点创新点->标签算法java类核心代码部分展示参考文献源码获取/详细视频演示本项目支持的技术栈微信小程序前端开发:运用微信开发者工具,设计简洁美观、交互友好的界面。实现页面布局、组件设计、用户交互效果
- 推荐系统Day2笔记
『₣λ¥√≈üĐ』
机器学习人工智能
协同过滤(CollaborativeFiltering)推荐算法是最经典、最常用的推荐算法。基本思想是:根据用户之前的喜好以及其他兴趣相近的用户的选择来给用户推荐物品。基于对用户历史行为数据的挖掘发现用户的喜好偏向,并预测用户可能喜好的产品进行推荐。一般是仅仅基于用户的行为数据(评价、购买、下载等),而不依赖于项的任何附加信息(物品自身特征)或者用户的任何附加信息(年龄,性别等)。目前应用比较广泛
- ”人货场”模型搞懂没?数据分析大部分场景都能用!
接地气的陈老师
人工智能数据分析大数据机器学习推荐系统
做数据分析的同学,很多都听过:人、货、场的分析模型。然而,这东西又是个只闻其名,不见真身的东西。到底该怎么结合实际分析?今天我们系统讲解下。问题场景:某生鲜电商,用户复购率较低,60%的用户在30天内无二次购买行为,运营领导非常着急,要求通过数据分析提升复购率,请问你作为数据分析师该怎么做?建立人工智能精准推荐算法(40%概率用协同过滤,60%用关联分析)把过往6个月月初复购率做成折线图,然后写下
- 数据可视化+SpringBoot+协同过滤推荐算法的美食点餐管理平台
qq_1249870753
课程设计美食springboot毕业设计
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,我会一一回复的,希望帮助到更多的人。背景分析在当今数字化浪潮席卷全球的时代,餐饮行业也正经历着深刻的变革,智慧点餐系统作为这场变革中的关键一环,其诞生和发展有着极为深远的背景意义。从宏观市场环境来看,随着全球经济的快速发展,餐饮行业呈现出蓬勃的发展态势。据相关数据统计,过去十年间,全球餐饮市场规模以每年[X]
- 人工智能之推荐系统实战系列(协同过滤,矩阵分解,FM与DeepFM算法)
weixin_58351028
人工智能深度学习神经网络算法机器学习
一.推荐系统介绍和应用(1)推荐系统通俗解读推荐系统就是来了就别想走了。例如在大数据时代中京东越买越想买,抖音越刷越是自己喜欢的东西,微博越刷越过瘾。(2).推荐系统发展简介1)推荐系统无处不在,它是根据用户的行为决定推荐的内容。用户每天在互联网中都会留下足迹,这样就会越来越多的用户画像。2)为什么要推荐系统卖的好的商品就那几种,其它就不管了吗?答案是否定的。80%的销售来自20%的热门商品,要想
- 深度学习 视频推荐
小赖同学啊
人工智能深度学习音视频人工智能
以下为你呈现一个基于深度学习实现视频推荐的简化代码示例。这里我们使用的是协同过滤思想结合神经网络的方式,借助TensorFlow和Keras库来构建模型。在这个示例中,假设已有用户对视频的评分数据,目标是预测用户对未评分视频的评分,进而为用户推荐可能感兴趣的视频。1.环境准备要确保你已经安装了必要的库,如numpy、pandas、tensorflow等,可以使用以下命令进行安装:pipinstal
- 【旅游管理与推荐系统】Python+Django网页界面平台+协同过滤推荐算法+管理系统
网站开发
一、介绍旅游管理与推荐系统。本系统使用Python作为主要编程语言,前端采用HTML、CSS、BootStrap等技术实现界面展示平台的开发,后端使用Django框架处理用户响应请求,并使用Ajax等技术实现前后端的数据通信。本系统主要功能有:系统分为两个角色:用户和管理员对于用户角色可以进行登录、注册、查看旅游景点信息、点赞、收藏、购买景点门票、发布评论、对景点进行评分、查看个人订单、查看个人收
- ✅毕业设计:python商品推荐系统+协同过滤推荐算法+网络爬虫 2种推荐算法 计算机毕业设计 大数据(附源码)✅
vx_biyesheji0004
biyesheji0001biyesheji0005biyesheji0004课程设计python推荐算法大数据毕业设计爬虫商品推荐系统
博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业项目实战6年之久,选择我们就是选择放心、选择安心毕业✌>想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。点击查看作者主页,了解更多项目!感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业。1、毕业设计:2025年
- Spark图书数据分析系统 Springboot协同过滤-余弦函数推荐系统 爬虫1万+数据 大屏数据展示 + [手把手视频教程 和 开发文档]
QQ-1305637939
毕业设计大数据毕设图书数据分析sparkspringboot爬虫
Spark图书数据分析系统Springboot协同过滤-余弦函数推荐系统爬虫1万+数据大屏数据展示+[手把手视频教程和开发文档]【亮点功能】1.Springboot+Vue+Element-UI+Mysql前后端分离2.Echarts图表统计数据,直观展示数据情况3.发表评论后,用户可以回复评论,回复的评论可以被再次回复,一级评论可以添加图片附件4.爬虫图书数据1万+5.推荐图书列表展示,推荐图书
- 智能房屋推荐系统 爬虫1w+数据 协同过滤余弦函数推荐
小盼江
课题设计毕设课设爬虫推荐算法毕业设计课程设计
智能房屋推荐系统爬虫1w+数据协同过滤余弦函数推荐毕设课设【亮点功能】1.Springboot+Vue+Element-UI+Mysql前后端分离2.Echarts图表统计数据,直观展示数据情况3.发表评论后,用户可以回复评论,回复的评论可以被再次回复,一级评论可以添加图片附件\4.爬虫房屋数据1万+5.推荐房屋列表展示,使用协同过滤余弦函数根据用户的评论,收藏,浏览历史数据进行推荐6.数据导出和
- Hadoop智能房屋推荐系统 爬虫1w+ 协同过滤余弦函数推荐 代码+视频教程+文档
小盼江
课题设计Hadoop课设hadoop爬虫大数据
Hadoop智能房屋推荐系统爬虫1w+协同过滤余弦函数推荐带视频教程毕设设计课题设计【Hadoop项目】1.data.csv上传到hadoop集群环境2.data.csv数据清洗3.MapReducer数据汇总处理,将Reducer的结果数据保存到本地Mysql数据库中4.Springboot+Echarts+MySQL显示数据分析结果分析数据维度如下:【房屋分类热度】【各分类下房屋数量及占比】【
- NeuralCF 模型:神经网络协同过滤模型
Lewis@
神经网络人工智能深度学习
实验和完整代码完整代码实现和jupyter运行:https://github.com/Myolive-Lin/RecSys--deep-learning-recommendation-system/tree/main引言NeuralCF模型由新加坡国立大学研究人员于2017年提出,其核心思想在于将传统协同过滤方法与深度学习技术相结合,从而更为有效地捕捉用户与物品之间的复杂交互关系。该模型利用神经网
- DeepSeek在协同过滤和深度学习技术中的应用场景
python算法(魔法师版)
深度学习人工智能
DeepSeek作为一个集成多种先进技术的平台,利用协同过滤和深度学习技术在多个领域实现了创新应用。以下是一些具体的场景和示例,展示了这些技术如何被应用于实际问题中。一、推荐系统电子商务协同过滤:在电商平台中,协同过滤用于根据用户的历史行为(如购买记录、浏览历史等)推荐相关商品。基于用户的相似性或项目的相似性来生成个性化推荐。Python深色版本fromsurpriseimportDataset,
- 短视频推荐系统架构设计:从召回、排序到冷启动的全链路解析
热爱分享的博士僧
系统架构
短视频推荐系统的设计是一个复杂的过程,涉及到从内容召回、排序到解决冷启动问题的多个环节。下面将对这一过程进行全链路解析。1.召回阶段召回是推荐系统的第一个步骤,目的是从海量的内容库中快速筛选出可能感兴趣的候选集供用户查看。常见的召回策略包括:基于流行度的召回:根据视频的观看次数、点赞数、分享数等指标来选择热门内容。协同过滤召回:利用用户行为数据(如浏览历史、点赞、评论等),找到与当前用户兴趣相似的
- MixRec: Heterogeneous Graph Collaborative Filtering
UnknownBody
Recommendation人工智能
本文是深度学习相关文章,针对《MixRec:HeterogeneousGraphCollaborativeFiltering》的翻译。MixRec:异构图协同过滤摘要1引言2前言3方法4评估5相关工作6结论摘要对于现代推荐系统来说,使用低维潜在表示来嵌入用户和基于他们观察到的交互的项目已经变得司空见惯。然而,许多现有的推荐模型主要是为粗粒度和同质交互而设计的,这限制了它们在两个关键维度上的有效性。
- SpringBoot+Vue.js协同过滤算法美食推荐小程序
wqq_992250277
javajava
摘要伴随着我国社会的发展,人民生活质量日益提高。于是对各种需求进行规范而严格是十分有必要的,所以许许多多的微信小程序应运而生。此时单靠人力应对这些事务就显得有些力不从心了。所以本论文将设计一套协同过滤算法美食推荐小程序,帮助美食推荐进行美食分类、美食信息、订单信息等繁琐又重复的工作,提高工作效率的同时,也减轻了管理者的压力。本论文的主要内容包括:第一,研究分析当下主流的Uni-weixin技术,结
- python爬虫项目(八十二):爬取旅游攻略网站的用户评论,构建旅游景点推荐系统
人工智能_SYBH
爬虫试读2025年爬虫百篇实战宝典:从入门到精通python爬虫旅游开发语言金融信息可视化
构建一个旅游景点推荐系统,可以帮助用户根据他们的偏好和其他用户的评论来选择旅行目的地。在这个项目中,我们将通过爬取旅游攻略网站的用户评论数据,分析这些数据,并使用协同过滤等推荐算法来构建一个基本的推荐系统。本文将详细描述整个过程,包括爬虫部分和推荐系统的构建。目录文章大纲一、项目背景与目标项目的目标:二、目标网站分析与数据需求数据需求:目标网站:三、爬虫技术选型安装所需库四、使用Scrapy爬取用
- AI技术赋能电商行业,引领变革
m0_74136676
人工智能
AI大模型在电商行业的应用正在不断拓展,其强大的数据处理和分析能力为电商平台带来了前所未有的创新机遇。一、购物推荐的创新应用AI大模型通过分析用户的浏览历史、购买记录、搜索关键词等大量数据,能够生成个性化的商品推荐。这种推荐系统比传统的基于规则或简单协同过滤的推荐更为精准。它利用深度学习技术,更准确地预测用户的兴趣点,使推荐内容更加贴切,从而提高用户点击率和购买转化率。例如,当用户在电商平台上搜索
- Python实现itemCF协同过滤推荐算法并计算召回率、准确率、F1分数和覆盖率
计算机软件程序设计
机器学习python推荐算法开发语言
一个完整的Python实现,包括ItemCF协同过滤算法的实现以及召回率、准确率、F1分数和覆盖率等评估指标的计算。将使用Pandas进行数据处理,Scikit-learn进行相似度计算,并编写函数来生成推荐列表和评估模型性能。1.数据准备首先,需要准备数据。假设有一个用户-物品评分矩阵(可以是显式评分或隐式反馈),表示用户对不同酒店的喜好程度。这里可以使用Pandas来处理数据。importpa
- 浅谈人群扩展(lookalike)模型
eso1983
算法
Lookalike主要用于广告或者推荐系统中,找到与种子用户相似的人群。常用的算法应该包括协同过滤、基于标签的相似度计算,还有一些机器学习模型,比如逻辑回归、随机森林,以及深度学习的模型,比如DNN或者Embedding方法。这里简单介绍一下Lookalike人群扩展(相似人群扩展)中常用算法模型的解析,涵盖原理、数学公式、实现步骤、优缺点及适用场景。1.基于标签的相似度匹配原理通过用户标签(兴趣
- 基于hadoop的协同过滤算法电影推荐系统的设计与实现
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于hadoop的协同过滤算法电影推荐系统的设计与实现文章目录基于hadoop的协同过滤算法电影推荐系统的设计与实现1.背景介绍1.1电影推荐系统的重要性1.2传统推荐系统的缺陷1.3Hadoop在大数据处理中的作用2.核心概念与联系2.1协同过滤算法2.2基于用户的协同过滤2.3基于项目的协同过滤2.4Hadoop在协同过滤算法中的应用3.核心算法原理具体操作步骤3.1基于用户的协同过滤算法流程
- mysql主从数据同步
林鹤霄
mysql主从数据同步
配置mysql5.5主从服务器(转)
教程开始:一、安装MySQL
说明:在两台MySQL服务器192.168.21.169和192.168.21.168上分别进行如下操作,安装MySQL 5.5.22
二、配置MySQL主服务器(192.168.21.169)mysql -uroot -p &nb
- oracle学习笔记
caoyong
oracle
1、ORACLE的安装
a>、ORACLE的版本
8i,9i : i是internet
10g,11g : grid (网格)
12c : cloud (云计算)
b>、10g不支持win7
&
- 数据库,SQL零基础入门
天子之骄
sql数据库入门基本术语
数据库,SQL零基础入门
做网站肯定离不开数据库,本人之前没怎么具体接触SQL,这几天起早贪黑得各种入门,恶补脑洞。一些具体的知识点,可以让小白不再迷茫的术语,拿来与大家分享。
数据库,永久数据的一个或多个大型结构化集合,通常与更新和查询数据的软件相关
- pom.xml
一炮送你回车库
pom.xml
1、一级元素dependencies是可以被子项目继承的
2、一级元素dependencyManagement是定义该项目群里jar包版本号的,通常和一级元素properties一起使用,既然有继承,也肯定有一级元素modules来定义子元素
3、父项目里的一级元素<modules>
<module>lcas-admin-war</module>
<
- sql查地区省市县
3213213333332132
sqlmysql
-- db_yhm_city
SELECT * FROM db_yhm_city WHERE class_parent_id = 1 -- 海南 class_id = 9 港、奥、台 class_id = 33、34、35
SELECT * FROM db_yhm_city WHERE class_parent_id =169
SELECT d1.cla
- 关于监听器那些让人头疼的事
宝剑锋梅花香
画图板监听器鼠标监听器
本人初学JAVA,对于界面开发我只能说有点蛋疼,用JAVA来做界面的话确实需要一定的耐心(不使用插件,就算使用插件的话也没好多少)既然Java提供了界面开发,老师又要求做,只能硬着头皮上啦。但是监听器还真是个难懂的地方,我是上了几次课才略微搞懂了些。
- JAVA的遍历MAP
darkranger
map
Java Map遍历方式的选择
1. 阐述
对于Java中Map的遍历方式,很多文章都推荐使用entrySet,认为其比keySet的效率高很多。理由是:entrySet方法一次拿到所有key和value的集合;而keySet拿到的只是key的集合,针对每个key,都要去Map中额外查找一次value,从而降低了总体效率。那么实际情况如何呢?
为了解遍历性能的真实差距,包括在遍历ke
- POJ 2312 Battle City 优先多列+bfs
aijuans
搜索
来源:http://poj.org/problem?id=2312
题意:题目背景就是小时候玩的坦克大战,求从起点到终点最少需要多少步。已知S和R是不能走得,E是空的,可以走,B是砖,只有打掉后才可以通过。
思路:很容易看出来这是一道广搜的题目,但是因为走E和走B所需要的时间不一样,因此不能用普通的队列存点。因为对于走B来说,要先打掉砖才能通过,所以我们可以理解为走B需要两步,而走E是指需要1
- Hibernate与Jpa的关系,终于弄懂
avords
javaHibernate数据库jpa
我知道Jpa是一种规范,而Hibernate是它的一种实现。除了Hibernate,还有EclipseLink(曾经的toplink),OpenJPA等可供选择,所以使用Jpa的一个好处是,可以更换实现而不必改动太多代码。
在play中定义Model时,使用的是jpa的annotations,比如javax.persistence.Entity, Table, Column, OneToMany
- 酸爽的console.log
bee1314
console
在前端的开发中,console.log那是开发必备啊,简直直观。通过写小函数,组合大功能。更容易测试。但是在打版本时,就要删除console.log,打完版本进入开发状态又要添加,真不够爽。重复劳动太多。所以可以做些简单地封装,方便开发和上线。
/**
* log.js hufeng
* The safe wrapper for `console.xxx` functions
*
- 哈佛教授:穷人和过于忙碌的人有一个共同思维特质
bijian1013
时间管理励志人生穷人过于忙碌
一个跨学科团队今年完成了一项对资源稀缺状况下人的思维方式的研究,结论是:穷人和过于忙碌的人有一个共同思维特质,即注意力被稀缺资源过分占据,引起认知和判断力的全面下降。这项研究是心理学、行为经济学和政策研究学者协作的典范。
这个研究源于穆来纳森对自己拖延症的憎恨。他7岁从印度移民美国,很快就如鱼得水,哈佛毕业
- other operate
征客丶
OSosx
一、Mac Finder 设置排序方式,预览栏 在显示-》查看显示选项中
二、有时预览显示时,卡死在那,有可能是一些临时文件夹被删除了,如:/private/tmp[有待验证]
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一
- 【Scala五】分析Spark源代码总结的Scala语法三
bit1129
scala
1. If语句作为表达式
val properties = if (jobIdToActiveJob.contains(jobId)) {
jobIdToActiveJob(stage.jobId).properties
} else {
// this stage will be assigned to "default" po
- ZooKeeper 入门
BlueSkator
中间件zk
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题。网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍。
值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利
- MySQL取得当前时间的函数是什么 格式化日期的函数是什么
BreakingBad
mysqlDate
取得当前时间用 now() 就行。
在数据库中格式化时间 用DATE_FORMA T(date, format) .
根据格式串format 格式化日期或日期和时间值date,返回结果串。
可用DATE_FORMAT( ) 来格式化DATE 或DATETIME 值,以便得到所希望的格式。根据format字符串格式化date值:
%S, %s 两位数字形式的秒( 00,01,
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 4_JAVA+Oracle面试题(有答案)
chenke
oracle
基础测试题
卷面上不能出现任何的涂写文字,所有的答案要求写在答题纸上,考卷不得带走。
选择题
1、 What will happen when you attempt to compile and run the following code? (3)
public class Static {
static {
int x = 5; // 在static内有效
}
st
- 新一代工作流系统设计目标
comsci
工作算法脚本
用户只需要给工作流系统制定若干个需求,流程系统根据需求,并结合事先输入的组织机构和权限结构,调用若干算法,在流程展示版面上面显示出系统自动生成的流程图,然后由用户根据实际情况对该流程图进行微调,直到满意为止,流程在运行过程中,系统和用户可以根据情况对流程进行实时的调整,包括拓扑结构的调整,权限的调整,内置脚本的调整。。。。。
在这个设计中,最难的地方是系统根据什么来生成流
- oracle 行链接与行迁移
daizj
oracle行迁移
表里的一行对于一个数据块太大的情况有二种(一行在一个数据块里放不下)
第一种情况:
INSERT的时候,INSERT时候行的大小就超一个块的大小。Oracle把这行的数据存储在一连串的数据块里(Oracle Stores the data for the row in a chain of data blocks),这种情况称为行链接(Row Chain),一般不可避免(除非使用更大的数据
- [JShop]开源电子商务系统jshop的系统缓存实现
dinguangx
jshop电子商务
前言
jeeshop中通过SystemManager管理了大量的缓存数据,来提升系统的性能,但这些缓存数据全部都是存放于内存中的,无法满足特定场景的数据更新(如集群环境)。JShop对jeeshop的缓存机制进行了扩展,提供CacheProvider来辅助SystemManager管理这些缓存数据,通过CacheProvider,可以把缓存存放在内存,ehcache,redis,memcache
- 初三全学年难记忆单词
dcj3sjt126com
englishword
several 儿子;若干
shelf 架子
knowledge 知识;学问
librarian 图书管理员
abroad 到国外,在国外
surf 冲浪
wave 浪;波浪
twice 两次;两倍
describe 描写;叙述
especially 特别;尤其
attract 吸引
prize 奖品;奖赏
competition 比赛;竞争
event 大事;事件
O
- sphinx实践
dcj3sjt126com
sphinx
安装参考地址:http://briansnelson.com/How_to_install_Sphinx_on_Centos_Server
yum install sphinx
如果失败的话使用下面的方式安装
wget http://sphinxsearch.com/files/sphinx-2.2.9-1.rhel6.x86_64.rpm
yum loca
- JPA之JPQL(三)
frank1234
ormjpaJPQL
1 什么是JPQL
JPQL是Java Persistence Query Language的简称,可以看成是JPA中的HQL, JPQL支持各种复杂查询。
2 检索单个对象
@Test
public void querySingleObject1() {
Query query = em.createQuery("sele
- Remove Duplicates from Sorted Array II
hcx2013
remove
Follow up for "Remove Duplicates":What if duplicates are allowed at most twice?
For example,Given sorted array nums = [1,1,1,2,2,3],
Your function should return length
- Spring4新特性——Groovy Bean定义DSL
jinnianshilongnian
spring 4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装Mysql5.5
liuxingguome
centos
CentOS下以RPM方式安装MySQL5.5
首先卸载系统自带Mysql:
yum remove mysql mysql-server mysql-libs compat-mysql51
rm -rf /var/lib/mysql
rm /etc/my.cnf
查看是否还有mysql软件:
rpm -qa|grep mysql
去http://dev.mysql.c
- 第14章 工具函数(下)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- POJ 1050
SaraWon
二维数组子矩阵最大和
POJ ACM第1050题的详细描述,请参照
http://acm.pku.edu.cn/JudgeOnline/problem?id=1050
题目意思:
给定包含有正负整型的二维数组,找出所有子矩阵的和的最大值。
如二维数组
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
中和最大的子矩阵是
9 2
-4 1
-1 8
且最大和是15
- [5]设计模式——单例模式
tsface
java单例设计模式虚拟机
单例模式:保证一个类仅有一个实例,并提供一个访问它的全局访问点
安全的单例模式:
/*
* @(#)Singleton.java 2014-8-1
*
* Copyright 2014 XXXX, Inc. All rights reserved.
*/
package com.fiberhome.singleton;
- Java8全新打造,英语学习supertool
yangshangchuan
javasuperword闭包java8函数式编程
superword是一个Java实现的英文单词分析软件,主要研究英语单词音近形似转化规律、前缀后缀规律、词之间的相似性规律等等。Clean code、Fluent style、Java8 feature: Lambdas, Streams and Functional-style Programming。
升学考试、工作求职、充电提高,都少不了英语的身影,英语对我们来说实在太重要