快速傅里叶变换C++递归算法实现
网上有些算法资料经测试运行结果是错误的,虽然代码的使用的是非递归形式。为了方便验证快速傅里叶变换的准确性,我提供了自己设计的递归算法。
基于时域抽取的“基2”快速傅里叶变换算法代码:
Fouier.h文件:
#pragma once
#include
"
Complex.h
"
class Fouier
{
Complex * data;
void fft(
int start,
int step,
int len);
Complex W(
int k,
int n);
//
e^(-i*2*pi*k/n)
public:
Fouier(
void);
~Fouier(
void);
void fft();
};
Fouier.c文件:
#include
"
Fouier.h
"
#include<iostream>
using
namespace std;
#include<cmath>
#include<ctime>
#define DATALEN 32
#define KEYVALUE 10000
//
生成随机浮点数的值,保证分子和分母在这个值之内
#define PI 3.14159265358979323846
Fouier::Fouier(
void)
{
data=
new Complex[DATALEN];
srand(unsigned
int(time(
0)));
cout<<
"
源数据:
"<<endl;
for(
int i=
0;i<DATALEN;i++)
{
data[i]=(rand()%(KEYVALUE))/(
double)(rand()%(KEYVALUE)+
1);
if(i%
5==
0&&i!=
0)
cout<<endl;
cout<<data[i]<<
"
";
}
cout<<endl;
}
Fouier::~Fouier(
void)
{
delete [] data;
}
Complex Fouier:: W(
int k,
int n)
//
欧拉公式
{
double alpha=-
2*PI*k/n;
return Complex(cos(alpha),sin(alpha));
}
void Fouier::fft(
int start,
int step,
int len)
{
if(len==
1)
//
一个元素
{
//
一个元素不需要变换
return ;
}
fft(start,step*
2,len/
2);
//
X1(k)
fft(start+step,step*
2,len/
2);
//
X2(k)
Complex X1,X2;
for(
int i=
0;i<len/
2;i++)
{
X1=data[start+step*i*
2];
X2=data[start+step*(i*
2+
1)];
//
计算X(k):k=0~N/2-1
data[start+step*i]=X1+W(i,len)*X2;
//
计算X(k):k=N/2~N-1
data[start+step*(i+len/
2)]=X1-W(i,len)*X2;
}
}
void Fouier::fft()
{
fft(
0,
1,DATALEN);
cout<<
"
变换后数据:
"<<endl;
for(
int i=
0;i<DATALEN;i++)
{
if(i%
5==
0&&i!=
0)
cout<<endl;
cout<<data[i]<<
"
";
}
}
Complex.h文件:
#pragma once
#include<iostream>
using
namespace std;
class Complex
//
a+b*i
{
double a;
//
实数部分
double b;
//
虚数部分
public:
Complex(
double a=
0,
double b=
0);
//
+操作
friend Complex
operator +(Complex &x,Complex &y);
friend Complex
operator +(
double x,Complex &y);
friend Complex
operator +(Complex &x,
double y);
//
-操作
friend Complex
operator -(Complex &x,Complex &y);
friend Complex
operator -(
double x,Complex &y);
friend Complex
operator -(Complex &x,
double y);
//
*操作
friend Complex
operator *(Complex &x,Complex &y);
friend Complex
operator *(
double x,Complex &y);
friend Complex
operator *(Complex &x,
double y);
//
=操作
Complex
operator =(Complex &x);
Complex
operator =(
double x);
//
<<操作
friend ostream &
operator<<(ostream&
out,Complex&c);
~Complex(
void);
};
Complex.c文件:
#include
"
Complex.h
"
Complex::Complex(
double a,
double b)
//
虚部默认是0
{
this->a=a;
this->b=b;
}
Complex::~Complex(
void)
{
}
Complex
operator +(Complex &x,Complex &y)
{
return Complex(x.a+y.a,x.b+y.b);
}
Complex
operator +(
double x,Complex &y)
{
return Complex(x+y.a,y.b);
}
Complex
operator +(Complex &x,
double y)
{
return Complex(x.a+y,x.b);
}
Complex
operator -(Complex &x,Complex &y)
{
return Complex(x.a-y.a,x.b-y.b);
}
Complex
operator -(
double x,Complex &y)
{
return Complex(x-y.a,-y.b);
}
Complex
operator -(Complex &x,
double y)
{
return Complex(x.a-y,x.b);
}
Complex
operator *(Complex &x,Complex &y)
{
return Complex(x.a*y.a-x.b*y.b,x.a*y.b+x.b*y.a);
}
Complex
operator *(
double x,Complex &y)
{
return Complex(x*y.a,x*y.b);
}
Complex
operator *(Complex &x,
double y)
{
return Complex(x.a*y,x.b*y);
}
Complex Complex::
operator =(Complex &x)
{
a=x.a;
b=x.b;
return *
this;
}
Complex Complex::
operator =(
double x)
{
a=x;
b=
0;
return *
this;
}
ostream &
operator<<(ostream&
out,Complex&c)
{
if(c.a!=
0||c.a==
0&&c.b==
0)
out<<c.a;
if(c.b!=
0)
{
if(c.b>
0)
out<<
"
+
";
if(c.b!=
1)
out<<c.b;
out<<
"
i
";
}
return
out;
}
main.c文件:
#include<iostream>
using
namespace std;
#include
"
Fouier.h
"
int main()
{
Fouier f;
f.fft();
return
0;
}
如有错误,欢迎批评指正!
参考资料:http://zhoufazhe2008.blog.163.com/blog/static/63326869200971010421361/
维基百科:http://zh.wikipedia.org/wiki/%E5%BF%AB%E9%80%9F%E5%82%85%E7%AB%8B%E5%8F%B6%E5%8F%98%E6%8D%A2