本文来自:http://alienryderflex.com/smallest_enclosing_polygon/
这个C代码例子需要一群2维点集,如下图所示:
要获得包含这些点的最小多边形如下图所示:
查找点集最小多边形的一种方法是——将所有点都传到函数中计算。
这段代码没有充分的测试过,所以如果你有任何问题,请告诉我。这个函数可以应对重叠点的问题,如果角点上有重叠点,它只会返回一个点。
// public-domain code by Darel Rex Finley, January 2009 #define CIRCLE_RADIANS 6.283185307179586476925286766559 // Determines the radian angle of the specified point (as it relates to the origin). // // Warning: Do not pass zero in both parameters, as this will cause division-by-zero. double angleOf(double x, double y) { double dist=sqrt(x*x+y*y) ; if (y>=0.) return acos( x/dist) ; else return acos(-x/dist)+.5*CIRCLE_RADIANS; } // Pass in a set of 2D points in x,y,points. Returns a polygon in polyX,polyY,polyCorners. // // To be safe, polyX and polyY should have enough space to store all the points passed in x,y,points. void findSmallestPolygon(double *x, double *y, long points, double *polyX, double *polyY, long *polyCorners) { double newX=x[0], newY=y[0], xDif, yDif, oldAngle=.5*CIRCLE_RADIANS, newAngle, angleDif, minAngleDif ; long i ; // Find a starting point. for (i=0; i<points; i++) if (y[i]>newY || y[i]==newY && x[i]<newX) { newX=x[i]; newY=y[i]; } *polyCorners=0; // Polygon-construction loop. while (!(*polyCorners) || newX!=polyX[0] || newY!=polyY[0]) { polyX[*polyCorners]=newX; polyY[*polyCorners]=newY; minAngleDif=CIRCLE_RADIANS; for (i=0; i<points; i++) { xDif=x[i]-polyX[*polyCorners]; yDif=y[i]-polyY[*polyCorners]; if (xDif || yDif) { newAngle=angleOf(xDif,yDif); angleDif =oldAngle-newAngle; while (angleDif< 0. ) angleDif+=CIRCLE_RADIANS; while (angleDif>=CIRCLE_RADIANS) angleDif-=CIRCLE_RADIANS; if (angleDif<minAngleDif) { minAngleDif=angleDif; newX=x[i]; newY=y[i]; }}} (*polyCorners)++; oldAngle+=.5*CIRCLE_RADIANS-minAngleDif; }}