by hugh.wangp
我们的数据绝大多数都是在HIVE上,对HIVE的SEQUENCEFILE和RCFILE的存储格式都有利用,为了满足HIVE的数据开放,hive client的方式就比较单一,直接访问HIVE生成的HDFS数据也是一种必要途径,所以本文整理测试了如何编写基于TEXTFILE、SEQUENCEFILE、RCFILE的数据的map reduce的代码。以wordcount的逻辑展示3种MR的代码。
其实只要知道MAP的输入格式是什么,就知道如何在MAP中处理数据;只要知道REDUCE(也可能只有MAP)的输出格式,就知道如何把处理结果转成输出格式。
表1:
如下代码片段是运行一个MR的最简单的配置:定义job、配置job、运行job
//map/reduce的job配置类,向hadoop框架描述map-reduce执行的工作 JobConf conf = new JobConf(WordCountRC.class); //设置一个用户定义的job名称 conf.setJobName("WordCountRC"); //为job的输出数据设置Key类 conf.setOutputKeyClass(Text.class); //为job输出设置value类 conf.setOutputValueClass(IntWritable.class); //为job设置Mapper类 conf.setMapperClass(MapClass.class); //为job设置Combiner类 conf.setCombinerClass(Reduce.class); //为job设置Reduce类 conf.setReducerClass(Reduce.class); //为map-reduce任务设置InputFormat实现类 conf.setInputFormat(RCFileInputFormat.class); //为map-reduce任务设置OutputFormat实现类 conf.setOutputFormat(TextOutputFormat.class); //为map-reduce job设置路径数组作为输入列表 FileInputFormat.setInputPaths(conf, new Path(args[0])); //为map-reduce job设置路径数组作为输出列表 FileOutputFormat.setOutputPath(conf, new Path(args[1])); //运行一个job JobClient.runJob(conf);
而此刻,我们更多的是关注配置InputFormat和OutputFormat的setInputFormat和setOutputFormat。根据我们不同的输入输出做相应的配置,可以选择表1的任何格式。
当我们确定了输入输出格式,接下来就是来在实现map和reduce函数时首选对输入格式做相应的处理,然后处理具体的业务逻辑,最后把处理后的数据转成既定的输出格式。
如下是处理textfile、sequencefile、rcfile输入文件的wordcount代码,大家可以比较一下具体区别,应该就能处理更多其它输入文件或者输出文件格式的数据。
代码1:textfile版wordcount
import java.io.IOException; import java.util.Iterator; import java.util.StringTokenizer; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.FileInputFormat; import org.apache.hadoop.mapred.FileOutputFormat; import org.apache.hadoop.mapred.JobClient; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.MapReduceBase; import org.apache.hadoop.mapred.Mapper; import org.apache.hadoop.mapred.OutputCollector; import org.apache.hadoop.mapred.Reducer; import org.apache.hadoop.mapred.Reporter; public class WordCountTxt{ public static class MapClass extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); @Override public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { String line = value.toString(); StringTokenizer itr = new StringTokenizer(line); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); output.collect(word, one); } } } public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> { @Override public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { int sum = 0; while (values.hasNext()) { sum += values.next().get(); } output.collect(key, new IntWritable(sum)); } } public static void main(String[] args) throws Exception { JobConf conf = new JobConf(WordCountTxt.class); conf.setJobName("wordcounttxt"); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class); conf.setMapperClass(MapClass.class); conf.setCombinerClass(Reduce.class); conf.setReducerClass(Reduce.class); FileInputFormat.setInputPaths(conf, new Path(args[0])); FileOutputFormat.setOutputPath(conf, new Path(args[1])); JobClient.runJob(conf); } }
代码2:sequencefile版wordcount
import java.io.IOException; import java.util.Iterator; import java.util.StringTokenizer; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.FileInputFormat; import org.apache.hadoop.mapred.FileOutputFormat; import org.apache.hadoop.mapred.JobClient; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.MapReduceBase; import org.apache.hadoop.mapred.Mapper; import org.apache.hadoop.mapred.OutputCollector; import org.apache.hadoop.mapred.Reducer; import org.apache.hadoop.mapred.Reporter; import org.apache.hadoop.mapred.SequenceFileAsTextInputFormat; import org.apache.hadoop.mapred.TextOutputFormat; public class WordCountSeq { public static class MapClass extends MapReduceBase implements Mapper<Text, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); @Override public void map(Text key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { String line = value.toString(); StringTokenizer itr = new StringTokenizer(line); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); output.collect(word, one); } } } public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> { @Override public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { int sum = 0; while (values.hasNext()) { sum += values.next().get(); } output.collect(key, new IntWritable(sum)); } } /** * @param args * @throws IOException */ public static void main(String[] args) throws IOException { // TODO Auto-generated method stub JobConf conf = new JobConf(WordCountSeq.class); conf.setJobName("wordcountseq"); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class); conf.setMapperClass(MapClass.class); conf.setCombinerClass(Reduce.class); conf.setReducerClass(Reduce.class); conf.setInputFormat(SequenceFileAsTextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(args[0])); FileOutputFormat.setOutputPath(conf, new Path(args[1])); JobClient.runJob(conf); } }
代码3:rcfile版wordcount
import java.io.IOException; import java.util.Iterator; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hive.ql.io.RCFileInputFormat; import org.apache.hadoop.hive.serde2.columnar.BytesRefArrayWritable; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.FileInputFormat; import org.apache.hadoop.mapred.FileOutputFormat; import org.apache.hadoop.mapred.JobClient; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.MapReduceBase; import org.apache.hadoop.mapred.Mapper; import org.apache.hadoop.mapred.OutputCollector; import org.apache.hadoop.mapred.Reducer; import org.apache.hadoop.mapred.Reporter; import org.apache.hadoop.mapred.TextOutputFormat; public class WordCountRC { public static class MapClass extends MapReduceBase implements Mapper<LongWritable, BytesRefArrayWritable, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private Text word =new Text(); @Override public void map(LongWritable key, BytesRefArrayWritable value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { Text txt = new Text(); txt.set(value.get(0).getData(), value.get(0).getStart(), value.get(0).getLength()); String[] result = txt.toString().split("\\s"); for(int i=0; i < result.length; i++){ word.set(result[i]); output.collect(word, one); } } } public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> { private IntWritable result = new IntWritable(); @Override public void reduce(Text key, Iterator<IntWritable> value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { int sum = 0; while (value.hasNext()) { sum += value.next().get(); } result.set(sum); output.collect(key, result); } } /** * @param args */ public static void main(String[] args) throws IOException{ JobConf conf = new JobConf(WordCountRC.class); conf.setJobName("WordCountRC"); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class); conf.setMapperClass(MapClass.class); conf.setCombinerClass(Reduce.class); conf.setReducerClass(Reduce.class); conf.setInputFormat(RCFileInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(args[0])); FileOutputFormat.setOutputPath(conf, new Path(args[1])); JobClient.runJob(conf); } }
原始数据:
hadoop fs -text /group/alidw-dev/seq_input/attempt_201201101606_2339628_m_000000_0 12/02/13 17:07:57 INFO util.NativeCodeLoader: Loaded the native-hadoop library 12/02/13 17:07:57 INFO zlib.ZlibFactory: Successfully loaded & initialized native-zlib library 12/02/13 17:07:57 INFO compress.CodecPool: Got brand-new decompressor 12/02/13 17:07:57 INFO compress.CodecPool: Got brand-new decompressor 12/02/13 17:07:57 INFO compress.CodecPool: Got brand-new decompressor 12/02/13 17:07:57 INFO compress.CodecPool: Got brand-new decompressor hello, i am ok. are you? i am fine too!
编译打包完成后执行:
hadoop jarWordCountSeq.jar WordCountSeq /group/alidw-dev/seq_input/ /group/alidw-dev/rc_output
执行完毕就能看到最终结果:
hadoop fs -cat /group/alidw-dev/seq_output/part-00000 am 2 are 1 fine 1 hello, 1 i 2 ok. 1 too! 1 you? 1