最近正在学习Python,看了几本关于Python入门的书和用Python进行自然语言处理的书,如《Python编程实践》、《Python基础教程》(第2版)、《Python自然语言处理》(影印版)。因为以前是学Java的,有着良好的面向对象的思维方式,所以刚开始看Python的语法,觉得Pyhon太随意了,很别扭,有不正规之嫌。而且,Python自己也正在向面向对象(OO)靠拢。但是,后来看到Python有强大的类库,尤其在自然语言处理方面有着强大的NLTK支持,我逐渐改变了对它的看法。不得不承认,Python非常简洁和清晰,很容易上手,对于有编程经验的人来说,可以快速编写程序来实现某个应用。下面是本人学习中的一些心得,与大家分享。
Python NLP实战之一:环境准备
要下载和安装的软件和资源有:
- Python
- PyYAML
- NLTK
- NLTK-Data
- NumPy
- Matplotlib
(一)下载地址和版本:
安装都很简单,我是在Window下安装的。
(二)运行Python IDLE
Python安装完成后,运行Python集成开发环境IDLE:开始->所有程序->Python 2.7 ->IDLE (Python GUI),打开一个新的窗口,显示如下信息,表明安装成功。
Python 2.7.2 (default, Jun 12 2011, 15:08:59) [MSC v.1500 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()" for more information.
>>>
(三)下载NLTK数据包
接下来,导入NLTK工具包,然后,下载NLTK数据源。
>>> import nltk
>>> nltk.download()
注意:在导入NLTK工具包时,如果显示如下信息,表明没有安装PyYAML。
>>> import nltk
Traceback (most recent call last):
File "<pyshell#0>", line 1, in <module>
import nltk
File "C:\Python27\lib\site-packages\nltk\__init__.py", line 107, in <module>
from yamltags import *
File "C:\Python27\lib\site-packages\nltk\yamltags.py", line 10, in <module>
import yaml
ImportError: No module named yaml
按照(一)所列的地址下载、安装完PyYAML后,再打开Python IDLE,导入NLTK,执行nltk.download(),我的界面出现的是文字提示,书上和网上有同学说是图形界面,两者都可以吧。
Python 2.7.2 (default, Jun 12 2011, 15:08:59) [MSC v.1500 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()" for more information.
>>> import nltk
>>> nltk.download()
NLTK Downloader
---------------------------------------------------------------------------
d) Download l) List u) Update c) Config h) Help q) Quit
---------------------------------------------------------------------------
Downloader>
选择d) Download,敲入d,再敲入l,然后按提示敲几次回车,显示的是将要下载的各种不同的数据包。
Downloader> d
Download which package (l=list; x=cancel)?
Identifier> l
Packages:
[ ] maxent_ne_chunker... ACE Named Entity Chunker (Maximum entropy)
[ ] abc................. Australian Broadcasting Commission 2006
[ ] alpino.............. Alpino Dutch Treebank
[ ] biocreative_ppi..... BioCreAtIvE (Critical Assessment of Information
Extraction Systems in Biology)
[ ] brown_tei........... Brown Corpus (TEI XML Version)
[ ] cess_esp............ CESS-ESP Treebank
[ ] chat80.............. Chat-80 Data Files
[ ] brown............... Brown Corpus
[ ] cmudict............. The Carnegie Mellon Pronouncing Dictionary (0.6)
[ ] city_database....... City Database
[ ] cess_cat............ CESS-CAT Treebank
[ ] comtrans............ ComTrans Corpus Sample
[ ] conll2002........... CONLL 2002 Named Entity Recognition Corpus
[ ] conll2007........... Dependency Treebanks from CoNLL 2007 (Catalan
and Basque Subset)
[ ] europarl_raw........ Sample European Parliament Proceedings Parallel
Corpus
[ ] dependency_treebank. Dependency Parsed Treebank
[ ] conll2000........... CONLL 2000 Chunking Corpus
Hit Enter to continue:
[ ] floresta............ Portuguese Treebank
[ ] names............... Names Corpus, Version 1.3 (1994-03-29)
[ ] gazetteers.......... Gazeteer Lists
[ ] genesis............. Genesis Corpus
[ ] gutenberg........... Project Gutenberg Selections
[ ] inaugural........... C-Span Inaugural Address Corpus
[ ] jeita............... JEITA Public Morphologically Tagged Corpus (in
ChaSen format)
[ ] movie_reviews....... Sentiment Polarity Dataset Version 2.0
[ ] ieer................ NIST IE-ER DATA SAMPLE
[ ] nombank.1.0......... NomBank Corpus 1.0
[ ] indian.............. Indian Language POS-Tagged Corpus
[ ] paradigms........... Paradigm Corpus
[ ] kimmo............... PC-KIMMO Data Files
[ ] knbc................ KNB Corpus (Annotated blog corpus)
[ ] langid.............. Language Id Corpus
[ ] mac_morpho.......... MAC-MORPHO: Brazilian Portuguese news text with
part-of-speech tags
[ ] machado............. Machado de Assis -- Obra Completa
[ ] pe08................ Cross-Framework and Cross-Domain Parser
Evaluation Shared Task
Hit Enter to continue:
[ ] pl196x.............. Polish language of the XX century sixties
[ ] pil................. The Patient Information Leaflet (PIL) Corpus
[ ] nps_chat............ NPS Chat
[ ] reuters............. The Reuters-21578 benchmark corpus, ApteMod
version
[ ] qc.................. Experimental Data for Question Classification
[ ] rte................. PASCAL RTE Challenges 1, 2, and 3
[ ] ppattach............ Prepositional Phrase Attachment Corpus
[ ] propbank............ Proposition Bank Corpus 1.0
[ ] problem_reports..... Problem Report Corpus
[ ] sinica_treebank..... Sinica Treebank Corpus Sample
[ ] verbnet............. VerbNet Lexicon, Version 2.1
[ ] state_union......... C-Span State of the Union Address Corpus
[ ] semcor.............. SemCor 3.0
[ ] senseval............ SENSEVAL 2 Corpus: Sense Tagged Text
[ ] smultron............ SMULTRON Corpus Sample
[ ] shakespeare......... Shakespeare XML Corpus Sample
[ ] stopwords........... Stopwords Corpus
[ ] swadesh............. Swadesh Wordlists
[ ] switchboard......... Switchboard Corpus Sample
[ ] toolbox............. Toolbox Sample Files
Hit Enter to continue:
[ ] unicode_samples..... Unicode Samples
[ ] webtext............. Web Text Corpus
[ ] timit............... TIMIT Corpus Sample
[ ] ycoe................ York-Toronto-Helsinki Parsed Corpus of Old
English Prose
[ ] treebank............ Penn Treebank Sample
[ ] udhr................ Universal Declaration of Human Rights Corpus
[ ] sample_grammars..... Sample Grammars
[ ] book_grammars....... Grammars from NLTK Book
[ ] spanish_grammars.... Grammars for Spanish
[ ] wordnet............. WordNet
[ ] wordnet_ic.......... WordNet-InfoContent
[ ] words............... Word Lists
[ ] tagsets............. Help on Tagsets
[ ] basque_grammars..... Grammars for Basque
[ ] large_grammars...... Large context-free and feature-based grammars
for parser comparison
[ ] maxent_treebank_pos_tagger Treebank Part of Speech Tagger (Maximum entropy)
[ ] rslp................ RSLP Stemmer (Removedor de Sufixos da Lingua
Portuguesa)
[ ] hmm_treebank_pos_tagger Treebank Part of Speech Tagger (HMM)
Hit Enter to continue:
[ ] punkt............... Punkt Tokenizer Models
Collections:
[ ] all-corpora......... All the corpora
[ ] all................. All packages
[ ] book................ Everything used in the NLTK Book
([*] marks installed packages)
你可以选择敲入 all-corpora,或all,或book,我选的是all。保持网络畅通,下载可能需要一段时间。显示信息如下:
Download which package (l=list; x=cancel)?
Identifier> all
Downloading collection 'all'
|
| Downloading package 'abc' to C:\Documents and
| Settings\lenovo\Application Data\nltk_data...
| Unzipping corpora\abc.zip.
| Downloading package 'alpino' to C:\Documents and
| Settings\lenovo\Application Data\nltk_data...
| Unzipping corpora\alpino.zip.
| Downloading package 'biocreative_ppi' to C:\Documents and
| Settings\lenovo\Application Data\nltk_data...
| Unzipping corpora\biocreative_ppi.zip.
| Downloading package 'brown' to C:\Documents and
| Settings\lenovo\Application Data\nltk_data...
| Unzipping corpora\brown.zip.
| Downloading package 'brown_tei' to C:\Documents and
| Settings\lenovo\Application Data\nltk_data...
| Unzipping corpora\brown_tei.zip.
| Downloading package 'cess_cat' to C:\Documents and
| Settings\lenovo\Application Data\nltk_data...
| Unzipping corpora\cess_cat.zip.
| Downloading package 'cess_esp' to C:\Documents and
| Settings\lenovo\Application Data\nltk_data...
| Unzipping corpora\cess_esp.zip.
| Downloading package 'chat80' to C:\Documents and
...
...
...
| Downloading package 'book_grammars' to C:\Documents and
| Settings\lenovo\Application Data\nltk_data...
| Unzipping grammars\book_grammars.zip.
| Downloading package 'sample_grammars' to C:\Documents and
| Settings\lenovo\Application Data\nltk_data...
| Unzipping grammars\sample_grammars.zip.
| Downloading package 'spanish_grammars' to C:\Documents and
| Settings\lenovo\Application Data\nltk_data...
| Unzipping grammars\spanish_grammars.zip.
| Downloading package 'basque_grammars' to C:\Documents and
| Settings\lenovo\Application Data\nltk_data...
| Unzipping grammars\basque_grammars.zip.
| Downloading package 'large_grammars' to C:\Documents and
| Settings\lenovo\Application Data\nltk_data...
| Unzipping grammars\large_grammars.zip.
| Downloading package 'tagsets' to C:\Documents and
| Settings\lenovo\Application Data\nltk_data...
|
Done downloading collection 'all'
---------------------------------------------------------------------------
d) Download l) List u) Update c) Config h) Help q) Quit
---------------------------------------------------------------------------
Downloader>
选择q,退出下载。
Downloader> q
True
注1:在这个过程中,可以获取帮助,用h) Help,敲入:h。显示如下:
Downloader> h
Commands:
d) Download a package or collection u) Update out of date packages
l) List packages & collections h) Help
c) View & Modify Configuration q) Quit
---------------------------------------------------------------------------
d) Download l) List u) Update c) Config h) Help q) Quit
---------------------------------------------------------------------------
Downloader>
注2:下载之前,可以选择下载到本地的路径,选择c) Config,敲入:c,进入Config环境。显示默认的下载路径,如下:
Downloader> c
Data Server:
- URL: <http://nltk.googlecode.com/svn/trunk/nltk_data/index.xml>
- 3 Package Collections Available
- 74 Individual Packages Available
Local Machine:
- Data directory: C:\Documents and Settings\lenovo\Application Data\nltk_data
---------------------------------------------------------------------------
s) Show Config u) Set Server URL d) Set Data Dir m) Main Menu
---------------------------------------------------------------------------
Config>
选择d) Set Data Dir,敲入:d,键入新的下载路径:
Config> d
New Directory> D:\nltk_data
---------------------------------------------------------------------------
s) Show Config u) Set Server URL d) Set Data Dir m) Main Menu
---------------------------------------------------------------------------
Config>
如果不改变下载路径,直接退出设置环境。
New Directory> q
Cancelled!
---------------------------------------------------------------------------
s) Show Config u) Set Server URL d) Set Data Dir m) Main Menu
---------------------------------------------------------------------------
Config>
返回到主菜单:
Config> m
---------------------------------------------------------------------------
d) Download l) List u) Update c) Config h) Help q) Quit
---------------------------------------------------------------------------
Downloader>
退出下载环境:
Downloader> q
True
注3:如果上述不成功的话,你可以直接到
http://nltk.googlecode.com/svn/trunk/nltk_data/index.xml 去下载数据包,放到下载路径的目录下即可。
(四)测试NLTK数据包
导入nltk.book包中所有的东西:
>>> from nltk.book import *
显示如下,表明NLTK数据成功装载。
>>> from nltk.book import *
*** Introductory Examples for the NLTK Book ***
Loading text1, ..., text9 and sent1, ..., sent9
Type the name of the text or sentence to view it.
Type: 'texts()' or 'sents()' to list the materials.
text1: Moby Dick by Herman Melville 1851
text2: Sense and Sensibility by Jane Austen 1811
text3: The Book of Genesis
text4: Inaugural Address Corpus
text5: Chat Corpus
text6: Monty Python and the Holy Grail
text7: Wall Street Journal
text8: Personals Corpus
text9: The Man Who Was Thursday by G . K . Chesterton 1908
>>>
(五)开始NLP工作
运行《Python自然语言处理》(影印版)中的例子,检索含“monstrous”的句子,查询词居中显示:
>>> text1.concordance('monstrous')
Building index...
Displaying 11 of 11 matches:
ong the former , one was of a most monstrous size . ... This came towards us ,
ON OF THE PSALMS . " Touching that monstrous bulk of the whale or ork we have r
ll over with a heathenish array of monstrous clubs and spears . Some were thick
d as you gazed , and wondered what monstrous cannibal and savage could ever hav
that has survived the flood ; most monstrous and most mountainous ! That Himmal
they might scout at Moby Dick as a monstrous fable , or still worse and more de
th of Radney .'" CHAPTER 55 Of the Monstrous Pictures of Whales . I shall ere l
ing Scenes . In connexion with the monstrous pictures of whales , I am strongly
ere to enter upon those still more monstrous stories of them which are to be fo
ght have been rummaged out of this monstrous cabinet there is no telling . But
of Whale - Bones ; for Whales of a monstrous size are oftentimes cast up dead u
>>>
再看几个例子。
查看语料库中的文本信息,直接敲它的名字:
>>> text1
<Text: Moby Dick by Herman Melville 1851>
>>> text2
<Text: Sense and Sensibility by Jane Austen 1811>
查看与检索词类似的词语:
>>> text1.similar('monstrous')
Building word-context index...
abundant candid careful christian contemptible curious delightfully
determined doleful domineering exasperate fearless few gamesome
horrible impalpable imperial lamentable lazy loving
>>> text2.similar('monstrous')
Building word-context index...
very exceedingly heartily so a amazingly as extremely good great
remarkably sweet vast
查看词语的分散度图:
>>> text4.dispersion_plot(['citizens','democracy','freedom','duties','America'])
Traceback (most recent call last):
File "<pyshell#12>", line 1, in <module>
text4.dispersion_plot(['citizens','democracy','freedom','duties','America'])
File "C:\Python27\lib\site-packages\nltk\text.py", line 454, in dispersion_plot
dispersion_plot(self, words)
File "C:\Python27\lib\site-packages\nltk\draw\dispersion.py", line 25, in
dispersion_plot
raise ValueError('The plot function requires the matplotlib package (aka pylab).'
ValueError: The plot function requires the matplotlib package (aka pylab).See
http://matplotlib.sourceforge.net/
>>>
注意到这里出错了,是因为找不到画图的工具包。按照提示,从(一)中所列的网站上下载、安装Matplotlib即可。我安装了NumPy和Matplotlib。显示如下图:
文本生成的例子:
>>> text3.generate()
Building ngram index...
In the six hundredth year of Noah , and Epher , and I put the stone
from the field , And Ophir , and laid him on the morrow , that thou
dost overtake them , and herb yielding seed after him that curseth
thee , of a tree yielding fruit after his kind , cattle , and spread
his tent , and Abimael , and Lot went out . The LORD God had taken
from our father is in the inn , he gathered up his hand . And say ye
moreover , Behold , I know that my
查看文本中的词例(token)数:
>>> len(text3)
44764
查看文本中的词型(type)数,并按字母升序列出:
>>> sorted(set(text3))
['!', "'", '(', ')', ',', ',)', '.', '.)', ':', ';', ';)', '?', '?)', 'A', 'Abel', 'Abelmizraim', 'Abidah', 'Abide', 'Abimael', 'Abimelech', 'Abr', 'Abrah', 'Abraham', 'Abram', 'Accad', 'Achbor', 'Adah', 'Adam', 'Adbeel', 'Admah', 'Adullamite', 'After', 'Aholibamah', 'Ahuzzath', 'Ajah', 'Akan', 'All', 'Allonbachuth', 'Almighty', 'Almodad', 'Also', 'Alvah', 'Alvan', 'Am', 'Amal', 'Amalek', 'Amalekites', 'Ammon', 'Amorite',...]
好了,准备工作已经做完了,以后就可以开始进行各种各样的NLP工作了,特别是对于中文(汉语)的自然语言处理工作,《Python自然语言处理》(影印版)并没有给出特别的篇幅。看来,这些工作还得我们自己想办法解决啊。