Storm 如何分发第三方依赖jar

Hadoop一般用在离线的分析计算中,而storm区别于hadoop,用在实时的流式计算中,被广泛用来进行实时日志处理、实时统计、实时风控等场景,当然也可以用在对数据进行实时初步的加工,存储到分布式数据库中如HBase,便于后续的查询。

面对的大批量的数据的实时计算,storm实现了一个可扩展的、低延迟、可靠性和容错的分布式计算平台。

1、对象介绍

tuple:表示流中一个基本的处理单元,可以包括多个field,每个filed表示一个属性

topology:一个拓扑是一个个计算节点组成的图,每个节点包换处理的逻辑,节点之间的连线表示数据流动的方向

spout:表示一个流的源头,产生tuple

bolt:处理输入流并产生多个输出流,可以做简单的数据转换计算,复杂的流处理一般需要经过多个bolt进行处理

nimnus:主控节点,负责在集群中发布代码,分配工作给机器,并且监听状态

supervisor:一个机器,工作节点,会监听分配给的工作,根据需要启动和关闭工作进程。

woker:执行topology的工作进程,用于生成task

task:每个spout和bolt都可以作为task在storm中运行,一个task对应一个线程

storm拓扑topology的组成见下图,

 Storm 如何分发第三方依赖jar

2、整体架构

 Storm 如何分发第三方依赖jar

客户端提交拓扑到nimbus。

Nimbus针对该拓扑建立本地的目录根据topology的配置计算task,分配task,在zookeeper上建立assignments节点存储task和supervisor机器节点中woker的对应关系;

在zookeeper上创建taskbeats节点来监控task的心跳;启动topology。

Supervisor去zookeeper上获取分配的tasks,启动多个woker进行,每个woker生成task,一个task一个线程;根据topology信息初始化建立task之间的连接;Task和Task之间是通过zeroMQ管理的;后整个拓扑运行起来。

 

 

原文:http://www.blogjava.net/killme2008/archive/2011/11/17/364112.html
    作者:dennis ([email protected])
    转载请注明出处。

    最近一直在读twitter开源的这个分布式流计算框架——storm的源码,还是有必要记录下一些比较有意思的地方。我按照storm的主要概念进行组织,并且只分析我关注的东西,因此称之为浅析。        

一、介绍
    Storm的开发语言主要是Java和Clojure,其中Java定义骨架,而Clojure编写核心逻辑。源码统计结果:

     180 text files.
     177 unique files.                                          
       7 files ignored.

http: // cloc.sourceforge.net v 1.55  T=1.0 s (171.0 files/s, 46869.0 lines/s)
-------------------------------------------------------------------------------
Language                     files          blank        comment           code
-------------------------------------------------------------------------------
Java                           125           5010           2414          25661
Lisp                            33            732            283           4871
Python                           7            742            433           4675
CSS                              1             12             45           1837
ruby                             2             22              0            104
Bourne Shell                     1              0              0              6
Javascript                       2              1             15              6
-------------------------------------------------------------------------------
SUM:                           171           6519           3190          37160
-------------------------------------------------------------------------------


    Java代码25000多行,而Clojure(Lisp)只有4871行,说语言不重要再次证明是扯淡。
         
二、Topology和Nimbus        
    Topology是storm的核心理念,将spout和bolt组织成一个topology,运行在storm集群里,完成实时分析和计算的任务。这里我主要想介绍下topology部署到storm集群的大概过程。提交一个topology任务到Storm集群是通过StormSubmitter.submitTopology方法提交:

StormSubmitter.submitTopology(name, conf, builder.createTopology());

    我们将topology打成jar包后,利用bin/storm这个python脚本,执行如下命令:

bin/storm jar xxxx.jar com.taobao.MyTopology args

    将jar包提交给storm集群。storm脚本会启动JVM执行Topology的main方法,执行submitTopology的过程。而submitTopology会将jar文件上传到nimbus,上传是通过socket传输。在storm这个python脚本的jar方法里可以看到:

def jar(jarfile, klass, *args):                                                                                                                               
   exec_storm_class(                                                                                                                                          
        klass,                                                                                                                                                
        jvmtype= " -client ",                                                                                                                                    
        extrajars=[jarfile, CONF_DIR, STORM_DIR +  " /bin "],                                                                                                    
        args=args,                                                                                                                                            
         prefix ="export STORM_JAR=" + jarfile + ";" ) 

     将jar文件的地址设置为环境变量STORM_JAR,这个环境变量在执行submitTopology的时候用到:

// StormSubmitter.java 
private  static  void submitJar(Map conf) {
         if(submittedJar== null) {
            LOG.info("Jar not uploaded to master yet. Submitting jar ");
            String localJar =  System.getenv("STORM_JAR" );
            submittedJar = submitJar(conf, localJar);
        }  else {
            LOG.info("Jar already uploaded to master. Not submitting jar.");
        }
    }

    通过环境变量找到jar包的地址,然后上传。利用环境变量传参是个小技巧。

    其次,nimbus在接收到jar文件后,存放到数据目录的inbox目录,nimbus数据目录的结构

-nimbus
     -inbox
         -stormjar-57f1d694-2865-4b3b-8a7c-99104fc0aea3.jar
         -stormjar-76b4e316-b430-4215-9e26-4f33ba4ee520.jar

     -stormdist
        -storm-id
           -stormjar.jar
           -stormconf.ser
           -stormcode.ser

     其中inbox用于存放提交的jar文件,每个jar文件都重命名为stormjar加上一个32位的UUID。而stormdist存放的是启动topology后生成的文件,每个topology都分配一个唯一的id,ID的规则是“name-计数-时间戳”。启动后的topology的jar文件名命名为storm.jar ,而它的配置经过java序列化后存放在stormconf.ser文件,而stormcode.ser是将topology本身序列化后存放的文件。这些文件在部署的时候,supervisor会从这个目录下载这些文件,然后在supervisor本地执行这些代码。
    进入重点,topology任务的分配过程(zookeeper路径说明忽略root):
1.在zookeeper上创建/taskheartbeats/{storm id} 路径,用于任务的心跳检测。storm对zookeeper的一个重要应用就是利用zk的临时节点做存活检测。task将定时刷新节点的时间戳,然后nimbus会检测这个时间戳是否超过timeout设置。
2.从topology中获取bolts,spouts设置的并行数目以及全局配置的最大并行数,然后产生task id列表,如[1 2 3 4]
3.在zookeeper上创建/tasks/{strom id}/{task id}路径,并存储task信息
4.开始分配任务(内部称为assignment), 具体步骤:
 (1)从zk上获得已有的assignment(新的toplogy当然没有了)
 (2)查找所有可用的slot,所谓slot就是可用的worker,在所有supervisor上配置的多个worker的端口。
 (3)将任务均匀地分配给可用的worker,这里有两种情况:
 (a)task数目比worker多,例如task是[1 2 3 4],可用的slot只有[host1:port1 host2:port1],那么最终是这样分配

{1: [host1:port1] 2 : [host2:port1]
         3 : [host1:port1] 4 : [host2:port1]}

,可以看到任务平均地分配在两个worker上。
(b)如果task数目比worker少,例如task是[1 2],而worker有[host1:port1 host1:port2 host2:port1 host2:port2],那么首先会将woker排序,将不同host间隔排列,保证task不会全部分配到同一个worker上,也就是将worker排列成

[host1:port1 host2:port1 host1:port2 host2:port2]

,然后分配任务为

{1: host1:port1 , 2 : host2:port2}


(4)记录启动时间
(5)判断现有的assignment是否跟重新分配的assignment相同,如果相同,不需要变更,否则更新assignment到zookeeper的/assignments/{storm id}上。
5.启动topology,所谓启动,只是将zookeeper上/storms/{storm id}对应的数据里的active设置为true。
6.nimbus会检查task的心跳,如果发现task心跳超过超时时间,那么会重新跳到第4步做re-assignment。

 

 

 storm job 提交,相关的临时文件的目录在用户临时目录。

 

C:\Users\zqhy\storm-local

 

 

你可能感兴趣的:(storm)