Hadoop一般用在离线的分析计算中,而storm区别于hadoop,用在实时的流式计算中,被广泛用来进行实时日志处理、实时统计、实时风控等场景,当然也可以用在对数据进行实时初步的加工,存储到分布式数据库中如HBase,便于后续的查询。
面对的大批量的数据的实时计算,storm实现了一个可扩展的、低延迟、可靠性和容错的分布式计算平台。
1、对象介绍
tuple:表示流中一个基本的处理单元,可以包括多个field,每个filed表示一个属性
topology:一个拓扑是一个个计算节点组成的图,每个节点包换处理的逻辑,节点之间的连线表示数据流动的方向
spout:表示一个流的源头,产生tuple
bolt:处理输入流并产生多个输出流,可以做简单的数据转换计算,复杂的流处理一般需要经过多个bolt进行处理
nimnus:主控节点,负责在集群中发布代码,分配工作给机器,并且监听状态
supervisor:一个机器,工作节点,会监听分配给的工作,根据需要启动和关闭工作进程。
woker:执行topology的工作进程,用于生成task
task:每个spout和bolt都可以作为task在storm中运行,一个task对应一个线程
storm拓扑topology的组成见下图,
2、整体架构
客户端提交拓扑到nimbus。
Nimbus针对该拓扑建立本地的目录根据topology的配置计算task,分配task,在zookeeper上建立assignments节点存储task和supervisor机器节点中woker的对应关系;
在zookeeper上创建taskbeats节点来监控task的心跳;启动topology。
Supervisor去zookeeper上获取分配的tasks,启动多个woker进行,每个woker生成task,一个task一个线程;根据topology信息初始化建立task之间的连接;Task和Task之间是通过zeroMQ管理的;后整个拓扑运行起来。
原文:http://www.blogjava.net/killme2008/archive/2011/11/17/364112.html
作者:dennis ([email protected])
转载请注明出处。
最近一直在读twitter开源的这个分布式流计算框架——storm的源码,还是有必要记录下一些比较有意思的地方。我按照storm的主要概念进行组织,并且只分析我关注的东西,因此称之为浅析。
一、介绍
Storm的开发语言主要是Java和Clojure,其中Java定义骨架,而Clojure编写核心逻辑。源码统计结果:
177 unique files.
7 files ignored.
http: // cloc.sourceforge.net v 1.55 T=1.0 s (171.0 files/s, 46869.0 lines/s)
-------------------------------------------------------------------------------
Language files blank comment code
-------------------------------------------------------------------------------
Java 125 5010 2414 25661
Lisp 33 732 283 4871
Python 7 742 433 4675
CSS 1 12 45 1837
ruby 2 22 0 104
Bourne Shell 1 0 0 6
Javascript 2 1 15 6
-------------------------------------------------------------------------------
SUM: 171 6519 3190 37160
-------------------------------------------------------------------------------
Java代码25000多行,而Clojure(Lisp)只有4871行,说语言不重要再次证明是扯淡。
二、Topology和Nimbus
Topology是storm的核心理念,将spout和bolt组织成一个topology,运行在storm集群里,完成实时分析和计算的任务。这里我主要想介绍下topology部署到storm集群的大概过程。提交一个topology任务到Storm集群是通过StormSubmitter.submitTopology方法提交:
我们将topology打成jar包后,利用bin/storm这个python脚本,执行如下命令:
将jar包提交给storm集群。storm脚本会启动JVM执行Topology的main方法,执行submitTopology的过程。而submitTopology会将jar文件上传到nimbus,上传是通过socket传输。在storm这个python脚本的jar方法里可以看到:
exec_storm_class(
klass,
jvmtype= " -client ",
extrajars=[jarfile, CONF_DIR, STORM_DIR + " /bin "],
args=args,
prefix ="export STORM_JAR=" + jarfile + ";" )
将jar文件的地址设置为环境变量STORM_JAR,这个环境变量在执行submitTopology的时候用到:
private static void submitJar(Map conf) {
if(submittedJar== null) {
LOG.info("Jar not uploaded to master yet. Submitting jar ");
String localJar = System.getenv("STORM_JAR" );
submittedJar = submitJar(conf, localJar);
} else {
LOG.info("Jar already uploaded to master. Not submitting jar.");
}
}
通过环境变量找到jar包的地址,然后上传。利用环境变量传参是个小技巧。
其次,nimbus在接收到jar文件后,存放到数据目录的inbox目录,nimbus数据目录的结构:
-inbox
-stormjar-57f1d694-2865-4b3b-8a7c-99104fc0aea3.jar
-stormjar-76b4e316-b430-4215-9e26-4f33ba4ee520.jar
-stormdist
-storm-id
-stormjar.jar
-stormconf.ser
-stormcode.ser
其中inbox用于存放提交的jar文件,每个jar文件都重命名为stormjar加上一个32位的UUID。而stormdist存放的是启动topology后生成的文件,每个topology都分配一个唯一的id,ID的规则是“name-计数-时间戳”。启动后的topology的jar文件名命名为storm.jar ,而它的配置经过java序列化后存放在stormconf.ser文件,而stormcode.ser是将topology本身序列化后存放的文件。这些文件在部署的时候,supervisor会从这个目录下载这些文件,然后在supervisor本地执行这些代码。
进入重点,topology任务的分配过程(zookeeper路径说明忽略root):
1.在zookeeper上创建/taskheartbeats/{storm id} 路径,用于任务的心跳检测。storm对zookeeper的一个重要应用就是利用zk的临时节点做存活检测。task将定时刷新节点的时间戳,然后nimbus会检测这个时间戳是否超过timeout设置。
2.从topology中获取bolts,spouts设置的并行数目以及全局配置的最大并行数,然后产生task id列表,如[1 2 3 4]
3.在zookeeper上创建/tasks/{strom id}/{task id}路径,并存储task信息
4.开始分配任务(内部称为assignment), 具体步骤:
(1)从zk上获得已有的assignment(新的toplogy当然没有了)
(2)查找所有可用的slot,所谓slot就是可用的worker,在所有supervisor上配置的多个worker的端口。
(3)将任务均匀地分配给可用的worker,这里有两种情况:
(a)task数目比worker多,例如task是[1 2 3 4],可用的slot只有[host1:port1 host2:port1],那么最终是这样分配
3 : [host1:port1] 4 : [host2:port1]}
,可以看到任务平均地分配在两个worker上。
(b)如果task数目比worker少,例如task是[1 2],而worker有[host1:port1 host1:port2 host2:port1 host2:port2],那么首先会将woker排序,将不同host间隔排列,保证task不会全部分配到同一个worker上,也就是将worker排列成
,然后分配任务为
(4)记录启动时间
(5)判断现有的assignment是否跟重新分配的assignment相同,如果相同,不需要变更,否则更新assignment到zookeeper的/assignments/{storm id}上。
5.启动topology,所谓启动,只是将zookeeper上/storms/{storm id}对应的数据里的active设置为true。
6.nimbus会检查task的心跳,如果发现task心跳超过超时时间,那么会重新跳到第4步做re-assignment。
storm job 提交,相关的临时文件的目录在用户临时目录。
C:\Users\zqhy\storm-local