ElasticSearch大批量数据入库

最近着手处理大批量数据的任务。

现状是这样的,一个数据采集程序承载大批量数据的存储和检索。后期可能需要对大批量数据进行统计。

数据分布情况

13个点定时生成采集结果到4个文件(小文件生成周期是5分钟)

 

名称                                                 大小(b)
gather_1_2014-02-27-14-50-0.txt                      568497
gather_1_2014-02-27-14-50-1.txt                      568665
gather_1_2014-02-27-14-50-2.txt                      568172
gather_1_2014-02-27-14-50-3.txt                      568275

 

 

同步使用shell脚本对四个文件入到sybase_iq库的一张表tab_tmp_2014_2_27中.

每天数据量大概是3亿条,所以小文件的总量大概是3G。小文件数量大,单表容量大执行复合主键查询,由原来2s延时变成了,5~10分钟。

针对上述情况需要对目前的储存结构进行优化。

才是看了下相关系统 catior使用的是环状数据库,存储相关的数据优点方便生成MRTG图,缺点不利于数据统计。后来引入elasticsearch来对大数据检索进行优化。

测试平台

 

cpu: AMD Opteron(tm) Processor 6136 64bit 2.4GHz   * 32
内存: 64G
硬盘:1.5T
操作系统:Red Hat Enterprise Linux Server release 6.4 (Santiago)

读取文件的目录结构:

 

[test@test001 data]$ ls
0  1  2  3

 简单测试代码:

 

 

public class FileReader
{

	private File file;
	private String splitCharactor;
	private Map<String, Class<?>> colNames;
	private static final Logger LOG = Logger.getLogger(FileReader.class);

	/**
	 * @param path
	 *            文件路径
	 * @param fileName
	 *            文件名
	 * @param splitCharactor
	 *            拆分字符
	 * @param colNames
	 *            主键名称
	 */
	public FileReader(File file, String splitCharactor, Map<String, Class<?>> colNames)
	{
		this.file = file;
		this.splitCharactor = splitCharactor;
		this.colNames = colNames;
	}

	/**
	 * 读取文件
	 * 
	 * @return
	 * @throws Exception
	 */
	public List<Map<String, Object>> readFile() throws Exception
	{
		List<Map<String, Object>> list = new ArrayList<Map<String, Object>>();
		if (!file.isFile())
		{
			throw new Exception("File not exists." + file.getName());
		}
		LineIterator lineIterator = null;
		try
		{
			lineIterator = FileUtils.lineIterator(file, "UTF-8");
			while (lineIterator.hasNext())
			{
				String line = lineIterator.next();
				String[] values = line.split(splitCharactor);
				if (colNames.size() != values.length)
				{
					continue;
				}
				Map<String, Object> map = new HashMap<String, Object>();
				Iterator<Entry<String, Class<?>>> iterator = colNames.entrySet()
						.iterator();
				int count = 0;
				while (iterator.hasNext())
				{
					Entry<String, Class<?>> entry = iterator.next();
					Object value = values[count];
					if (!String.class.equals(entry.getValue()))
					{
						value = entry.getValue().getMethod("valueOf", String.class)
								.invoke(null, value);
					}
					map.put(entry.getKey(), value);
					count++;
				}
				list.add(map);
			}
		}
		catch (IOException e)
		{
			LOG.error("File reading line error." + e.toString(), e);
		}
		finally
		{
			LineIterator.closeQuietly(lineIterator);
		}
		return list;
	}
}

 

public class StreamIntoEs
{

	public static class ChildThread extends Thread
	{

		int number;

		public ChildThread(int number)
		{
			this.number = number;
		}

		@Override
		public void run()
		{
			Settings settings = ImmutableSettings.settingsBuilder()
					.put("client.transport.sniff", true)
					.put("client.transport.ping_timeout", 100)
					.put("cluster.name", "elasticsearch").build();
			TransportClient client = new TransportClient(settings)
					.addTransportAddress(new InetSocketTransportAddress("192.168.32.228",
							9300));
			File dir = new File("/export/home/es/data/" + number);
			LinkedHashMap<String, Class<?>> colNames = new LinkedHashMap<String, Class<?>>();
			colNames.put("aa", Long.class);
			colNames.put("bb", String.class);
			colNames.put("cc", String.class);
			colNames.put("dd", Integer.class);
			colNames.put("ee", Long.class);
			colNames.put("ff", Long.class);
			colNames.put("hh", Long.class);
			int count = 0;
			long startTime = System.currentTimeMillis();
			for (File file : dir.listFiles())
			{
				int currentCount = 0;
				long startCurrentTime = System.currentTimeMillis();
				FileReader reader = new FileReader(file, "\\$", colNames);
				BulkResponse resp = null;
				BulkRequestBuilder bulkRequest = client.prepareBulk();
				try
				{
					List<Map<String, Object>> results = reader.readFile();
					for (Map<String, Object> col : results)
					{
						bulkRequest.add(client.prepareIndex("flux", "fluxdata")
								.setSource(JSON.toJSONString(col)).setId(col.get("getway")+"##"+col.get("port_info")+"##"+col.get("device_id")+"##"+col.get("collecttime")));
						count++;
						currentCount++;
					}
					resp = bulkRequest.execute().actionGet();
				}
				catch (Exception e)
				{
					// TODO Auto-generated catch block
					e.printStackTrace();
				}
				long endCurrentTime = System.currentTimeMillis();
				System.out.println("[thread-" + number + "-]per count:" + currentCount);
				System.out.println("[thread-" + number + "-]per time:"
						+ (endCurrentTime - startCurrentTime));
				System.out.println("[thread-" + number + "-]per count/s:"
						+ (float) currentCount / (endCurrentTime - startCurrentTime)
						* 1000);
				System.out.println("[thread-" + number + "-]per count/s:"
						+ resp.toString());
			}
			long endTime = System.currentTimeMillis();
			System.out.println("[thread-" + number + "-]total count:" + count);
			System.out.println("[thread-" + number + "-]total time:"
					+ (endTime - startTime));
			System.out.println("[thread-" + number + "-]total count/s:" + (float) count
					/ (endTime - startTime) * 1000);
			// IndexRequest request =
			// = client.index(request);
		}
	}

	public static void main(String args[])
	{
		for (int i = 0; i < 4; i++)
		{
			ChildThread childThread = new ChildThread(i);
			childThread.start();
		}
	}
}

 起了4个线程来做入库,每个文件解析完成进行一次批处理。

 

初始化脚本:

 

curl -XDELETE 'http://192.168.32.228:9200/twitter/'

 

curl -XPUT 'http://192.168.32.228:9200/twitter/' -d '
{
     "index" :{
          "number_of_shards" : 5,
          "number_of_replicas ": 0,
          "index.refresh_interval": "-1",
         "index.translog.flush_threshold_ops": "100000"
     }
}'

 

curl -XPUT 'http://192.168.32.228:9200/twiter/twiterdata/_mapping' -d '
{
             "twiterdata": {
                    "aa" : {"type" : "long", "index" : "not_analyzed"},
                    "bb" : {"type" : "String", "index" : "not_analyzed"},
                    "cc" : {"type" : "String", "index" : "not_analyzed"},
                    "dd" : {"type" : "integer", "index" : "not_analyzed"},
                    "ee" : {"type" : "long", "index" : "no"},
                    "ff" : {"type" : "long", "index" : "no"},
                    "gg" : {"type" : "long", "index" : "no"},
                    "hh" : {"type" : "long", "index" : "no"},
                    "ii" : {"type" : "long", "index" : "no"},
                    "jj" : {"type" : "long", "index" : "no"},
                    "kk" : {"type" : "long", "index" : "no"},
                }
}

 执行效率参考:

 

不开启refresh_interval
[test@test001 bin]$ more StreamIntoEs.out|grep total
[thread-2-]total count:1199411
[thread-2-]total time:1223718
[thread-2-]total count/s:980.1368
[thread-1-]total count:1447214
[thread-1-]total time:1393528
[thread-1-]total count/s:1038.5253
[thread-0-]total count:1508043
[thread-0-]total time:1430167
[thread-0-]total count/s:1054.4524
[thread-3-]total count:1650576
[thread-3-]total time:1471103
[thread-3-]total count/s:1121.9989
4195.1134

开启refresh_interval
[test@test001 bin]$ more StreamIntoEs.out |grep total
[thread-2-]total count:1199411
[thread-2-]total time:996111
[thread-2-]total count/s:1204.0938
[thread-1-]total count:1447214
[thread-1-]total time:1163207
[thread-1-]total count/s:1244.1586
[thread-0-]total count:1508043
[thread-0-]total time:1202682
[thread-0-]total count/s:1253.9
[thread-3-]total count:1650576
[thread-3-]total time:1236239
[thread-3-]total count/s:1335.1593
5037.3117

开启refresh_interval  字段类型转换
[test@test001 bin]$ more StreamIntoEs.out |grep total
[thread-2-]total count:1199411
[thread-2-]total time:1065229
[thread-2-]total count/s:1125.9653
[thread-1-]total count:1447214
[thread-1-]total time:1218342
[thread-1-]total count/s:1187.8552
[thread-0-]total count:1508043
[thread-0-]total time:1230474
[thread-0-]total count/s:1225.5789
[thread-3-]total count:1650576
[thread-3-]total time:1274027
[thread-3-]total count/s:1295.5581
4834.9575

开启refresh_interval  字段类型转换 设置id
[thread-2-]total count:1199411
[thread-2-]total time:912251
[thread-2-]total count/s:1314.7817
[thread-1-]total count:1447214
[thread-1-]total time:1067117
[thread-1-]total count/s:1356.1906
[thread-0-]total count:1508043
[thread-0-]total time:1090577
[thread-0-]total count/s:1382.7937
[thread-3-]total count:1650576
[thread-3-]total time:1128490
[thread-3-]total count/s:1462.6412
5516.4072

 580M的数据平均用时大概是20分钟。索引文件大约为1.76G

 

 相关测试结果可以参考这里:

 elasticsearch 性能测试

 

 

你可能感兴趣的:(java,elasticsearch)