Given a sequence of integers, a1, a2,..., an <tex2html_verbatim_mark>, we define its sign matrix S such that, Sij = `` + " <tex2html_verbatim_mark>if ai +...+ aj > 0 <tex2html_verbatim_mark>; Sij = `` - " <tex2html_verbatim_mark>if ai +...+ aj < 0 <tex2html_verbatim_mark>; and Sij = ``0" <tex2html_verbatim_mark>otherwise.
For example, if (a1, a2, a3, a4) = (- 1, 5, - 4, 2) <tex2html_verbatim_mark>, then its sign matrix S <tex2html_verbatim_mark>is a 4×4 <tex2html_verbatim_mark>matrix:
We say that the sequence (-1, 5, -4, 2) generates the sign matrix. A sign matrix is valid if it can be generated by a sequence of integers.
Given a sequence of integers, it is easy to compute its sign matrix. This problem is about the opposite direction: Given a valid sign matrix, find a sequence of integers that generates the sign matrix. Note that two or more different sequences of integers can generate the same sign matrix. For example, the sequence (-2, 5, -3, 1) generates the same sign matrix as the sequence (-1,5, -4,2).
Write a program that, given a valid sign matrix, can find a sequence of integers that generates the sign matrix. You may assume that every integer in a sequence is between -10 and 10, both inclusive.
Input
Your program is to read from standard input. The input consists of T <tex2html_verbatim_mark>test cases. The number of test cases T<tex2html_verbatim_mark>is given in the first line of the input. Each test case consists of two lines. The first line contains an integer n <tex2html_verbatim_mark>(1n10) <tex2html_verbatim_mark>, where n <tex2html_verbatim_mark>is the length of a sequence of integers. The second line contains a string of n(n + 1)/2 <tex2html_verbatim_mark>characters such that the first n <tex2html_verbatim_mark>characters correspond to the first row of the sign matrix, the next n - 1 <tex2html_verbatim_mark>characters to the second row, ... <tex2html_verbatim_mark>, and the last character to the n <tex2html_verbatim_mark>-th row.
Output
Your program is to write to standard output. For each test case, output exactly one line containing a sequence of n <tex2html_verbatim_mark>integers which generates the sign matrix. If more than one sequence generates the sign matrix, you may output any one of them. Every integer in the sequence must be between -10 and 10, both inclusive.
Sample Input
3 4 -+0++++--+ 2 +++ 5 ++0+-+-+--+-+--
Sample Output
-2 5 -3 1 3 4 1 2 -3 4 -5
#include<cstdio> #include<cstring> #include<vector> #include<algorithm> using namespace std; const int maxn = 10 + 5; int n, G[maxn][maxn]; // 注意本题结点编号为0~n int c[maxn]; vector<int> topo; bool dfs(int u){ c[u] = -1; for(int v = 0; v <= n; v++) if(G[u][v]) { if(c[v]<0) return false; else if(!c[v]) dfs(v); } c[u] = 1; topo.push_back(u); return true; } bool toposort(){ topo.clear(); memset(c, 0, sizeof(c)); for(int u = 0; u <= n; u++) if(!c[u]) if(!dfs(u)) return false; reverse(topo.begin(), topo.end()); return true; } // 用并查集合并相等结点 int pa[maxn]; int findset(int x) { return pa[x] != x ? pa[x] = findset(pa[x]) : x; } int main() { int T; scanf("%d", &T); while(T--) { char input[100], S[11][11]; scanf("%d%s", &n, input); int idx = 0; for(int i = 0; i <= n; i++) pa[i] = i; for(int i = 1; i <= n; i++) for(int j = i; j <= n; j++) { S[i][j] = input[idx++]; if(S[i][j] == '0') pa[j] = i-1; // sum[j]-sum[i-1]=0,因此j和i-1是等价结点 } // 若前缀和sum[a] < sum[b],连边a->b,在拓扑序中a会在b的前面 memset(G, 0, sizeof(G)); for(int i = 1; i <= n; i++) for(int j = i; j <= n; j++) { if(S[i][j] == '-') G[findset(j)][findset(i-1)] = 1; // sum[j]-sum[i-1] < 0 if(S[i][j] == '+') G[findset(i-1)][findset(j)] = 1; // sum[j]-sum[i-1] > 0 } toposort(); int sum[maxn], cur = 0; for(int i = 0; i <= n; i++) sum[topo[i]] = cur++; // 按照拓扑序依次赋值0, 1, 2, ... for(int i = 1; i <= n; i++) { sum[i] = sum[findset(i)]; if(i > 1) printf(" "); printf("%d", sum[i] - sum[i-1]); // 注意,sum[0]未必等于0 } printf("\n"); } return 0; }