动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。
比如01背包问题。
/* 一个旅行者有一个最多能用M公斤的背包,现在有N件物品,
它们的重量分别是W1,W2,...,Wn,
它们的价值分别为P1,P2,...,Pn.
若每种物品只有一件求旅行者能获得最大总价值。
输入格式:
M,N
W1,P1
W2,P2
......
输出格式:
X
*/
因为背包最大容量M未知。所以,我们的程序要从1到M一个一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。
测试数据:
10,3
3,4
4,5
5,6
c[i][j]数组保存了1,2,3号物品依次选择后的最大价值.
这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排 c3的最佳方案是4.所以。总的最佳方案是5+4为9.这样.一排一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.)
从以上最大价值的构造过程中可以看出。
f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程。
下面给出我们第五次个人赛时出的一道题:
Description
Input
Output
Sample Input
1 5 10 1 2 3 4 5 5 4 3 2 1
Sample Output
14
//基础01背包问题,v容量的包,每个物品权值和容量已知求包能装的最大总权值和。
//f[i][j]表示对于前i个物品,包的容量为j时最大能装的权值和,当然转移的时候对于当前物品
//只有装和不装两种选择,如果不装则由f[i-1][j],如果装则由f[i-1][j-vol[i]]转移而来。
#include<iostream>
using namespace std;
#define IN(x) scanf("%d",&x)
#define max(x,y) x>y?x:y
int value[1009],volume[1009];
int f[1001][1001];
int main()
{
int cnt,n,v,i,j;
IN(cnt);
while(cnt--)
{
IN(n);IN(v);
for(i = 1; i <= n; i ++) //注意,这边得空出一位来,wa了两次了
IN(value[i]);
for(i = 1; i <= n; i ++)
IN(volume[i]);
memset(f,0,sizeof(f));
for(i = 1; i <= n; i ++)
for(j = 0; j <= v; j ++)
{
if(volume[i] <= j)
f[i][j] = max(f[i-1][j],f[i-1][j-volume[i]]+value[i]);
else
f[i][j] = f[i-1][j];
}
printf("%d\n",f[i-1][j-1]);
}
return 0;
}
另外,这也可以用一维数组来简化代码。f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。伪代码如下:
for i=1..N
for v=V..0
f[v]=max{f[v],f[v-c[i]]+w[i]};
其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程f[i][v]=max{f[i-1][v],f[i-1][vc[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v 的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题:完全背包问题 最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。
下面给出本题的一维数组的解法。
#include<iostream>
using namespace std;
#define IN(x) scanf("%d",&x)
#define max(x,y) x>y?x:y
int value[1009],volume[1009];
int f[1001];
int main()
{
int cnt,n,v,i,j;
IN(cnt);
while(cnt--)
{
IN(n);IN(v);
for(i = 0; i < n; i ++)
IN(value[i]);
for(i = 0; i < n; i ++)
IN(volume[i]);
memset(f,0,sizeof(f));
for(i = 0; i < n; i ++)
for(j = v; j >= 0; j --)
{
if(volume[i] <= j)
f[j] = max(f[j],f[j-volume[i]]+value[i]);
}
printf("%d\n",f[v]);
}
return 0;
}