有时候,我们使用Hadoop处理数据时,在Reduce阶段,我们可能想对每一个输出的key进行单独输出一个目录或文件,这样方便数据分析,比如根据某个时间段对日志文件进行时间段归类等等。这时候我们就可以使用MultipleOutputs类,来搞定这件事,
下面,先来看下散仙的测试数据:
输出结果:预期输出结果是:
中国一组,美国一组,中国人一组
核心代码如下:
如果是中文的路径名,则会报如下的一个异常:
源码中关于名称的校验如下:
程序运行成功输出:
运行成功后,生成的文件如下所示:
china-r-00000里面的数据如下:
USA-r-00000里面的数据如下:
cperson-r-00000里面的数据如下:
在输出结果中,reduce自带的那个文件仍然会输出,但是里面没有任何数据,至此,我们已经在hadoop1.2.0的基于新的API里,测试多文件输出通过。
下面,先来看下散仙的测试数据:
- 中国;我们
- 美国;他们
- 中国;123
- 中国人;善良
- 美国;USA
- 美国;在北美洲
输出结果:预期输出结果是:
中国一组,美国一组,中国人一组
核心代码如下:
- package com.partition.test;
- import java.io.IOException;
- import org.apache.hadoop.fs.FileSystem;
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.io.LongWritable;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.mapred.JobConf;
- import org.apache.hadoop.mapreduce.Job;
- import org.apache.hadoop.mapreduce.Mapper;
- import org.apache.hadoop.mapreduce.Partitioner;
- import org.apache.hadoop.mapreduce.Reducer;
- import org.apache.hadoop.mapreduce.lib.db.DBConfiguration;
- import org.apache.hadoop.mapreduce.lib.db.DBInputFormat;
- import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
- import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
- import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
- import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
- import com.qin.operadb.PersonRecoder;
- import com.qin.operadb.ReadMapDB;
- /***
- * @author qindongliang
- *
- * 大数据技术交流群:324714439
- * **/
- public class TestMultiOutput {
- /**
- * map任务
- *
- * **/
- public static class PMapper extends Mapper<LongWritable, Text, Text, Text>{
- @Override
- protected void map(LongWritable key, Text value,Context context)
- throws IOException, InterruptedException {
- String ss[]=value.toString().split(";");
- context.write(new Text(ss[0]), new Text(ss[1]));
- }
- }
- public static class PReduce extends Reducer<Text, Text, Text, Text>{
- /**
- * 设置多个文件输出
- * */
- private MultipleOutputs mos;
- @Override
- protected void setup(Context context)
- throws IOException, InterruptedException {
- mos=new MultipleOutputs(context);//初始化mos
- }
- @Override
- protected void reduce(Text arg0, Iterable<Text> arg1, Context arg2)
- throws IOException, InterruptedException {
- String key=arg0.toString();
- for(Text t:arg1){
- if(key.equals("中国")){
- /**
- * 一个参数
- * **/
- mos.write("china", arg0,t);
- } else if(key.equals("美国")){
- mos.write("USA", arg0,t);
- } else if(key.equals("中国人")){
- mos.write("cperson", arg0,t);
- }
- //System.out.println("Reduce: "+arg0.toString()+" "+t.toString());
- }
- }
- @Override
- protected void cleanup(
- Context context)
- throws IOException, InterruptedException {
- mos.close();//释放资源
- }
- }
- public static void main(String[] args) throws Exception{
- JobConf conf=new JobConf(ReadMapDB.class);
- //Configuration conf=new Configuration();
- // conf.set("mapred.job.tracker","192.168.75.130:9001");
- //读取person中的数据字段
- // conf.setJar("tt.jar");
- //注意这行代码放在最前面,进行初始化,否则会报
- /**Job任务**/
- Job job=new Job(conf, "testpartion");
- job.setJarByClass(TestMultiOutput.class);
- System.out.println("模式: "+conf.get("mapred.job.tracker"));;
- // job.setCombinerClass(PCombine.class);
- //job.setPartitionerClass(PPartition.class);
- //job.setNumReduceTasks(5);
- job.setMapperClass(PMapper.class);
- /**
- * 注意在初始化时需要设置输出文件的名
- * 另外名称,不支持中文名,仅支持英文字符
- *
- * **/
- MultipleOutputs.addNamedOutput(job, "china", TextOutputFormat.class, Text.class, Text.class);
- MultipleOutputs.addNamedOutput(job, "USA", TextOutputFormat.class, Text.class, Text.class);
- MultipleOutputs.addNamedOutput(job, "cperson", TextOutputFormat.class, Text.class, Text.class);
- job.setReducerClass(PReduce.class);
- job.setOutputKeyClass(Text.class);
- job.setOutputValueClass(Text.class);
- String path="hdfs://192.168.75.130:9000/root/outputdb";
- FileSystem fs=FileSystem.get(conf);
- Path p=new Path(path);
- if(fs.exists(p)){
- fs.delete(p, true);
- System.out.println("输出路径存在,已删除!");
- }
- FileInputFormat.setInputPaths(job, "hdfs://192.168.75.130:9000/root/input");
- FileOutputFormat.setOutputPath(job,p );
- System.exit(job.waitForCompletion(true) ? 0 : 1);
- }
- }
如果是中文的路径名,则会报如下的一个异常:
- 模式: local
- 输出路径存在,已删除!
- WARN - NativeCodeLoader.<clinit>(52) | Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
- WARN - JobClient.copyAndConfigureFiles(746) | Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
- WARN - JobClient.copyAndConfigureFiles(870) | No job jar file set. User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
- INFO - FileInputFormat.listStatus(237) | Total input paths to process : 1
- WARN - LoadSnappy.<clinit>(46) | Snappy native library not loaded
- INFO - JobClient.monitorAndPrintJob(1380) | Running job: job_local1533332464_0001
- INFO - LocalJobRunner$Job.run(340) | Waiting for map tasks
- INFO - LocalJobRunner$Job$MapTaskRunnable.run(204) | Starting task: attempt_local1533332464_0001_m_000000_0
- INFO - Task.initialize(534) | Using ResourceCalculatorPlugin : null
- INFO - MapTask.runNewMapper(729) | Processing split: hdfs://192.168.75.130:9000/root/input/group.txt:0+91
- INFO - MapTask$MapOutputBuffer.<init>(949) | io.sort.mb = 100
- INFO - MapTask$MapOutputBuffer.<init>(961) | data buffer = 79691776/99614720
- INFO - MapTask$MapOutputBuffer.<init>(962) | record buffer = 262144/327680
- INFO - MapTask$MapOutputBuffer.flush(1289) | Starting flush of map output
- INFO - MapTask$MapOutputBuffer.sortAndSpill(1471) | Finished spill 0
- INFO - Task.done(858) | Task:attempt_local1533332464_0001_m_000000_0 is done. And is in the process of commiting
- INFO - LocalJobRunner$Job.statusUpdate(466) |
- INFO - Task.sendDone(970) | Task 'attempt_local1533332464_0001_m_000000_0' done.
- INFO - LocalJobRunner$Job$MapTaskRunnable.run(229) | Finishing task: attempt_local1533332464_0001_m_000000_0
- INFO - LocalJobRunner$Job.run(348) | Map task executor complete.
- INFO - Task.initialize(534) | Using ResourceCalculatorPlugin : null
- INFO - LocalJobRunner$Job.statusUpdate(466) |
- INFO - Merger$MergeQueue.merge(408) | Merging 1 sorted segments
- INFO - Merger$MergeQueue.merge(491) | Down to the last merge-pass, with 1 segments left of total size: 101 bytes
- INFO - LocalJobRunner$Job.statusUpdate(466) |
- WARN - LocalJobRunner$Job.run(435) | job_local1533332464_0001
- java.lang.IllegalArgumentException: Name cannot be have a '一' char
- at org.apache.hadoop.mapreduce.lib.output.MultipleOutputs.checkTokenName(MultipleOutputs.java:160)
- at org.apache.hadoop.mapreduce.lib.output.MultipleOutputs.checkNamedOutputName(MultipleOutputs.java:186)
- at org.apache.hadoop.mapreduce.lib.output.MultipleOutputs.write(MultipleOutputs.java:363)
- at org.apache.hadoop.mapreduce.lib.output.MultipleOutputs.write(MultipleOutputs.java:348)
- at com.partition.test.TestMultiOutput$PReduce.reduce(TestMultiOutput.java:74)
- at com.partition.test.TestMultiOutput$PReduce.reduce(TestMultiOutput.java:1)
- at org.apache.hadoop.mapreduce.Reducer.run(Reducer.java:177)
- at org.apache.hadoop.mapred.ReduceTask.runNewReducer(ReduceTask.java:649)
- at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:418)
- at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:398)
- INFO - JobClient.monitorAndPrintJob(1393) | map 100% reduce 0%
- INFO - JobClient.monitorAndPrintJob(1448) | Job complete: job_local1533332464_0001
- INFO - Counters.log(585) | Counters: 17
- INFO - Counters.log(587) | File Input Format Counters
- INFO - Counters.log(589) | Bytes Read=91
- INFO - Counters.log(587) | FileSystemCounters
- INFO - Counters.log(589) | FILE_BYTES_READ=177
- INFO - Counters.log(589) | HDFS_BYTES_READ=91
- INFO - Counters.log(589) | FILE_BYTES_WRITTEN=71111
- INFO - Counters.log(587) | Map-Reduce Framework
- INFO - Counters.log(589) | Map output materialized bytes=105
- INFO - Counters.log(589) | Map input records=6
- INFO - Counters.log(589) | Reduce shuffle bytes=0
- INFO - Counters.log(589) | Spilled Records=6
- INFO - Counters.log(589) | Map output bytes=87
- INFO - Counters.log(589) | Total committed heap usage (bytes)=227737600
- INFO - Counters.log(589) | Combine input records=0
- INFO - Counters.log(589) | SPLIT_RAW_BYTES=112
- INFO - Counters.log(589) | Reduce input records=0
- INFO - Counters.log(589) | Reduce input groups=0
- INFO - Counters.log(589) | Combine output records=0
- INFO - Counters.log(589) | Reduce output records=0
- INFO - Counters.log(589) | Map output records=6
源码中关于名称的校验如下:
- /**
- * Checks if a named output name is valid token.
- *
- * @param namedOutput named output Name
- * @throws IllegalArgumentException if the output name is not valid.
- */
- private static void checkTokenName(String namedOutput) {
- if (namedOutput == null || namedOutput.length() == 0) {
- throw new IllegalArgumentException(
- "Name cannot be NULL or emtpy");
- }
- for (char ch : namedOutput.toCharArray()) {
- if ((ch >= 'A') && (ch <= 'Z')) {
- continue;
- }
- if ((ch >= 'a') && (ch <= 'z')) {
- continue;
- }
- if ((ch >= '0') && (ch <= '9')) {
- continue;
- }
- throw new IllegalArgumentException(
- "Name cannot be have a '" + ch + "' char");
- }
- }
程序运行成功输出:
- 模式: 192.168.75.130:9001
- 输出路径存在,已删除!
- WARN - JobClient.copyAndConfigureFiles(746) | Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
- INFO - FileInputFormat.listStatus(237) | Total input paths to process : 1
- WARN - NativeCodeLoader.<clinit>(52) | Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
- WARN - LoadSnappy.<clinit>(46) | Snappy native library not loaded
- INFO - JobClient.monitorAndPrintJob(1380) | Running job: job_201404101853_0006
- INFO - JobClient.monitorAndPrintJob(1393) | map 0% reduce 0%
- INFO - JobClient.monitorAndPrintJob(1393) | map 100% reduce 0%
- INFO - JobClient.monitorAndPrintJob(1393) | map 100% reduce 33%
- INFO - JobClient.monitorAndPrintJob(1393) | map 100% reduce 100%
- INFO - JobClient.monitorAndPrintJob(1448) | Job complete: job_201404101853_0006
- INFO - Counters.log(585) | Counters: 29
- INFO - Counters.log(587) | Job Counters
- INFO - Counters.log(589) | Launched reduce tasks=1
- INFO - Counters.log(589) | SLOTS_MILLIS_MAPS=9289
- INFO - Counters.log(589) | Total time spent by all reduces waiting after reserving slots (ms)=0
- INFO - Counters.log(589) | Total time spent by all maps waiting after reserving slots (ms)=0
- INFO - Counters.log(589) | Launched map tasks=1
- INFO - Counters.log(589) | Data-local map tasks=1
- INFO - Counters.log(589) | SLOTS_MILLIS_REDUCES=13645
- INFO - Counters.log(587) | File Output Format Counters
- INFO - Counters.log(589) | Bytes Written=0
- INFO - Counters.log(587) | FileSystemCounters
- INFO - Counters.log(589) | FILE_BYTES_READ=105
- INFO - Counters.log(589) | HDFS_BYTES_READ=203
- INFO - Counters.log(589) | FILE_BYTES_WRITTEN=113616
- INFO - Counters.log(589) | HDFS_BYTES_WRITTEN=87
- INFO - Counters.log(587) | File Input Format Counters
- INFO - Counters.log(589) | Bytes Read=91
- INFO - Counters.log(587) | Map-Reduce Framework
- INFO - Counters.log(589) | Map output materialized bytes=105
- INFO - Counters.log(589) | Map input records=6
- INFO - Counters.log(589) | Reduce shuffle bytes=105
- INFO - Counters.log(589) | Spilled Records=12
- INFO - Counters.log(589) | Map output bytes=87
- INFO - Counters.log(589) | Total committed heap usage (bytes)=176033792
- INFO - Counters.log(589) | CPU time spent (ms)=1880
- INFO - Counters.log(589) | Combine input records=0
- INFO - Counters.log(589) | SPLIT_RAW_BYTES=112
- INFO - Counters.log(589) | Reduce input records=6
- INFO - Counters.log(589) | Reduce input groups=3
- INFO - Counters.log(589) | Combine output records=0
- INFO - Counters.log(589) | Physical memory (bytes) snapshot=278876160
- INFO - Counters.log(589) | Reduce output records=0
- INFO - Counters.log(589) | Virtual memory (bytes) snapshot=1460908032
- INFO - Counters.log(589) | Map output records=6
运行成功后,生成的文件如下所示:
china-r-00000里面的数据如下:
- 中国 我们
- 中国 123
USA-r-00000里面的数据如下:
- 美国 他们
- 美国 USA
- 美国 在北美洲
cperson-r-00000里面的数据如下:
- 中国人 善良
在输出结果中,reduce自带的那个文件仍然会输出,但是里面没有任何数据,至此,我们已经在hadoop1.2.0的基于新的API里,测试多文件输出通过。