LSM树--高效的存储

转http://bofang.iteye.com/blog/1676698

 

论文 The Log-Structure Merge-Tree(LSM-tree)(http://www.google.com.my/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&ved=0CDoQFjAD&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.44.2782%26rep%3Drep1%26type%3Dpdf&ei=6OlPUJuZFsaYiAfIkIHIDg&usg=AFQjCNGGoN9IFTLShcv2HbL0RVQdElfxow&sig2=8wysS63qlqRvWf5m3lk7bg) 描述了这种数据结构的目标和算法细节。

 

LSM-tree主要目标是快速地建立索引。B-tree是建立索引的通用技术,但是,在大并发插入数据的情况下,B-tree需要大量的磁盘随机 IO,很显然,大量的磁盘随机IO会严重影响索引建立的速度。特别地,对于那些索引数据大的情况(例如,两个列的联合索引),插入速度是对性能影响的重要 指标,而读取相对来说就比较少。LSM-tree通过磁盘的顺序写,来达到最优的写性能,因为这会大大降低磁盘的寻道次数,一次磁盘IO可以写入多个索引 块。

 

LSM-tree的主要思想是划分不同等级的树。以两级树为例,可以想象一份索引数据由两个树组成,一棵树存在于内存,一棵树存在于磁盘。内存中的 树可以不一定是B-树,可以是其他的树,例如AVL树。因为数据大小是不同的,没必要牺牲CPU来达到最小的树高度。而存在于磁盘的树是一棵B-树。

 

LSM树--高效的存储_第1张图片

 

数据首先会插入到内存中的树。当内存中的树中的数据超过一定阈值时,会进行合并操作。合并操作会从左至右遍历内存中的树的叶子节点与磁盘中的树的叶 子节点进行合并,当被合并的数据量达到磁盘的存储页的大小时,会将合并后的数据持久化到磁盘,同时更新父亲节点对叶子节点的指针。

 

LSM树--高效的存储_第2张图片

 

之前存在于磁盘的叶子节点被合并后,旧的数据并不会被删除,这些数据会拷贝一份和内存中的数据一起顺序写到磁盘。这会操作一些空间的浪费,但是,LSM-tree提供了一些机制来回收这些空间。

 

磁盘中的树的非叶子节点数据也被缓存在内存中。

 

数据查找会首先查找内存中树,如果没有查到结果,会转而查找磁盘中的树。

 

有一个很显然的问题是,如果数据量过于庞大,磁盘中的树相应地也会很大,导致的后果是合并的速度会变慢。一个解决方法是建立各个层次的树,低层次的 树都比上一层次的树数据集大。假设内存中的树为c0, 磁盘中的树按照层次一次为c1, c2, c3, ... ck-1, ck。合并的顺序是(c0, c1), (c1, c2)...(ck-1, ck)。

 

为什么LSM-tree的插入很快

 

1. 首先,插入操作首先会作用于内存,并且,内存中的树不会很大,这会很快。

2. 合并操作会顺序写入一个或多个磁盘页,这比随机写快得多。

你可能感兴趣的:(ls)