字符串“编辑距离”(最大公共子串提取)

今天在群里聊天,提及了 "编辑距离" 算法。好久不用,重新练练手,免得日后用时乱找。 [sweat]

1. Levenshtein Distance

该算法又称之为 "编辑距离",用于计算两个字符串的相似程度。原理很简单,就是返回将第一个字符串转换(删除、插入、替换)成第二个字符串的编辑次数。次数越少,意味着字符串相似度越高。

算法原理:Wikipedia - Levenshtein distance

Step1:

    人 民 共 和 时 代
  0, 0, 0, 0, 0, 0, 0
中 1, 0, 0, 0, 0, 0, 0
华 2, 0, 0, 0, 0, 0, 0
人 3, 0, 0, 0, 0, 0, 0
民 4, 0, 0, 0, 0, 0, 0
共 5, 0, 0, 0, 0, 0, 0
和 6, 0, 0, 0, 0, 0, 0
国 7, 0, 0, 0, 0, 0, 0

Step2:

    人 民 共 和 时 代
  0, 1, 2, 3, 4, 5, 6
中 1, 0, 0, 0, 0, 0, 0
华 2, 0, 0, 0, 0, 0, 0
人 3, 0, 0, 0, 0, 0, 0
民 4, 0, 0, 0, 0, 0, 0
共 5, 0, 0, 0, 0, 0, 0
和 6, 0, 0, 0, 0, 0, 0
国 7, 0, 0, 0, 0, 0, 0

Step3:

    人 民 共 和 时 代
  0, 1, 2, 3, 4, 5, 6
中 1, 1, 2, 3, 4, 5, 6
华 2, 2, 2, 3, 4, 5, 6
人 3, 2, 3, 3, 4, 5, 6
民 4, 3, 2, 3, 4, 5, 6
共 5, 4, 3, 2, 3, 4, 5
和 6, 5, 4, 3, 2, 3, 4
国 7, 6, 5, 4, 3, 3, 4

算法实现Code:

public static int LevenshteinDistance(string s1, string s2)
{
if (s1 == s2)
return 0;
else if (String.IsNullOrEmpty(s1))
return s2.Length;
else if (String.IsNullOrEmpty(s2))
return s1.Length;

var m = s1.Length + 1;
var n = s2.Length + 1;
var d = new int[m, n];

// Step1
for (var i = 0; i < m; i++) d[i, 0] = i;

// Step2
for (var j = 0; j < n; j++) d[0, j] = j;

// Step3
for (var i = 1; i < m; i++)
{
for (var j = 1; j < n; j++)
{
var cost = s1[i - 1] == s2[j - 1] ? 0 : 1;

var deletion = d[i - 1, j] + 1;
var insertion = d[i, j - 1] + 1;
var substitution = d[i - 1, j - 1] + cost;

d[i, j] = Math.Min(Math.Min(deletion, insertion), substitution);
}
}

return d[m - 1, n - 1];
}

2. LCS

LCS (Longest Common Subsequence) 算法用于找出两个字符串最长公共子串。

算法原理:

(1) 将两个字符串分别以行和列组成矩阵。
(2) 计算每个节点行列字符是否相同,如相同则为 1。
(3) 通过找出值为 1 的最长对角线即可得到最长公共子串。

  人 民 共 和 时 代
中 0, 0, 0, 0, 0, 0
华 0, 0, 0, 0, 0, 0
1, 0, 0, 0, 0, 0
民 0, 1, 0, 0, 0, 0
共 0, 0, 1, 0, 0, 0
和 0, 0, 0, 1, 0, 0
国 0, 0, 0, 0, 0, 0

为进一步提升该算法,我们可以将字符相同节点(1)的值加上左上角(d[i-1, j-1])的值,这样即可获得最大公用子串的长度。如此一来只需以行号和最大值为条件即可截取最大子串。

  人 民 共 和 时 代
中 0, 0, 0, 0, 0, 0
华 0, 0, 0, 0, 0, 0
1, 0, 0, 0, 0, 0
民 0, 2, 0, 0, 0, 0
共 0, 0, 3, 0, 0, 0
和 0, 0, 0, 4, 0, 0
国 0, 0, 0, 0, 0, 0

算法实现Code:

public static string LCS(string s1, string s2)
{
    if (s1 == s2)
        return s1;
    else if (String.IsNullOrEmpty(s1) || String.IsNullOrEmpty(s2))
        return null;

    var d = new int[s1.Length, s2.Length];

    var index = 0;
    var length = 0;

    for (int i = 0; i < s1.Length; i++)
    {
        for (int j = 0; j < s2.Length; j++)
        {
            // 左上角值
            var n = i - 1 >= 0 && j - 1 >= 0 ? d[i - 1, j - 1] : 0;

            // 当前节点值 = "1 + 左上角值" : "0"
            d[i, j] = s1[i] == s2[j] ? 1 + n : 0;

            // 如果是最大值,则记录该值和行号
            if (d[i, j] > length)
            {
                length = d[i, j];
                index = i;
            }
        }
    }

    return s1.Substring(index - length + 1, length);
}

你可能感兴趣的:(算法,J#)