近期看mahout的关联规则源码,颇为头痛,本来打算写一个系列分析关联规则的源码的,但是后面看到有点乱了,可能是稍微有点复杂吧,所以就打算先实现最简单的二项集关联规则。
算法的思想还是参考上次的图片:
这里实现分为五个步骤:
- 针对原始输入计算每个项目出现的次数;
- 按出现次数从大到小(排除出现次数小于阈值的项目)生成frequence list file;
- 针对原始输入的事务进行按frequence list file进行排序并剪枝;
- 生成二项集规则;
- 计算二项集规则出现的次数,并删除小于阈值的二项集规则;
第一步的实现:包括步骤1和步骤2,代码如下:
GetFlist.java:
- package org.fansy.date1108.fpgrowth.twodimension;
- import java.io.BufferedReader;
- import java.io.IOException;
- import java.io.InputStreamReader;
- import java.util.ArrayList;
- import java.util.Comparator;
- import java.util.Iterator;
- import java.util.List;
- import java.util.PriorityQueue;
- import java.util.regex.Pattern;
- import org.apache.hadoop.conf.Configuration;
- import org.apache.hadoop.fs.FSDataInputStream;
- import org.apache.hadoop.fs.FSDataOutputStream;
- import org.apache.hadoop.fs.FileSystem;
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.io.IntWritable;
- import org.apache.hadoop.io.LongWritable;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.mapreduce.Job;
- import org.apache.hadoop.mapreduce.Mapper;
- import org.apache.hadoop.mapreduce.Reducer;
- import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
- import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
- // the specific comparator
- class MyComparator implements Comparator<String>{
- private String splitter=",";
- public MyComparator(String splitter){
- this.splitter=splitter;
- }
- @Override
- public int compare(String o1, String o2) {
- // TODO Auto-generated method stub
- String[] str1=o1.toString().split(splitter);
- String[] str2=o2.toString().split(splitter);
- int num1=Integer.parseInt(str1[1]);
- int num2=Integer.parseInt(str2[1]);
- if(num1>num2){
- return -1;
- }else if(num1<num2){
- return 1;
- }else{
- return str1[0].compareTo(str2[0]);
- }
- }
- }
- public class GetFList {
- /**
- * the program is based on the picture
- */
- // Mapper
- public static class MapperGF extends Mapper<LongWritable ,Text ,Text,IntWritable>{
- private Pattern splitter=Pattern.compile("[ ]*[ ,|\t]");
- private final IntWritable newvalue=new IntWritable(1);
- public void map(LongWritable key,Text value,Context context) throws IOException, InterruptedException{
- String [] items=splitter.split(value.toString());
- for(String item:items){
- context.write(new Text(item), newvalue);
- }
- }
- }
- // Reducer
- public static class ReducerGF extends Reducer<Text,IntWritable,Text ,IntWritable>{
- public void reduce(Text key,Iterable<IntWritable> value,Context context) throws IOException, InterruptedException{
- int temp=0;
- for(IntWritable v:value){
- temp+=v.get();
- }
- context.write(key, new IntWritable(temp));
- }
- }
- public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
- // TODO Auto-generated method stub
- if(args.length!=3){
- System.out.println("Usage: <input><output><min_support>");
- System.exit(1);
- }
- String input=args[0];
- String output=args[1];
- int minSupport=0;
- try {
- minSupport=Integer.parseInt(args[2]);
- } catch (NumberFormatException e) {
- // TODO Auto-generated catch block
- minSupport=3;
- }
- Configuration conf=new Configuration();
- String temp=args[1]+"_temp";
- Job job=new Job(conf,"the get flist job");
- job.setJarByClass(GetFList.class);
- job.setMapperClass(MapperGF.class);
- job.setCombinerClass(ReducerGF.class);
- job.setReducerClass(ReducerGF.class);
- job.setOutputKeyClass(Text.class);
- job.setOutputValueClass(IntWritable.class);
- FileInputFormat.setInputPaths(job, new Path(input));
- FileOutputFormat.setOutputPath(job, new Path(temp));
- boolean succeed=job.waitForCompletion(true);
- if(succeed){
- // read the temp output and write the data to the final output
- List<String> list=readFList(temp+"/part-r-00000",minSupport);
- System.out.println("the frequence list has generated ... ");
- // generate the frequence file
- generateFList(list,output);
- System.out.println("the frequence file has generated ... ");
- }else{
- System.out.println("the job is failed");
- System.exit(1);
- }
- }
- // read the temp_output and return the frequence list
- public static List<String> readFList(String input,int minSupport) throws IOException{
- // read the hdfs file
- Configuration conf=new Configuration();
- Path path=new Path(input);
- FileSystem fs=FileSystem.get(path.toUri(),conf);
- FSDataInputStream in1=fs.open(path);
- PriorityQueue<String> queue=new PriorityQueue<String>(15,new MyComparator("\t"));
- InputStreamReader isr1=new InputStreamReader(in1);
- BufferedReader br=new BufferedReader(isr1);
- String line;
- while((line=br.readLine())!=null){
- int num=0;
- try {
- num=Integer.parseInt(line.split("\t")[1]);
- } catch (NumberFormatException e) {
- // TODO Auto-generated catch block
- num=0;
- }
- if(num>minSupport){
- queue.add(line);
- }
- }
- br.close();
- isr1.close();
- in1.close();
- List<String> list=new ArrayList<String>();
- while(!queue.isEmpty()){
- list.add(queue.poll());
- }
- return list;
- }
- // generate the frequence file
- public static void generateFList(List<String> list,String output) throws IOException{
- Configuration conf=new Configuration();
- Path path=new Path(output);
- FileSystem fs=FileSystem.get(path.toUri(),conf);
- FSDataOutputStream writer=fs.create(path);
- Iterator<String> i=list.iterator();
- while(i.hasNext()){
- writer.writeBytes(i.next()+"\n");// in the last line add a \n which is not supposed to exist
- }
- writer.close();
- }
- }
步骤1的实现其实就是最简单的wordcount程序的实现,在步骤2中涉及到HDFS文件的读取以及写入。在生成frequence list file时排序时用到了PriorityQueue类,同时自定义了一个类用来定义排序规则;
第二步:步骤3,代码如下:
SortAndCut.java:
- package org.fansy.date1108.fpgrowth.twodimension;
- import java.io.BufferedReader;
- import java.io.IOException;
- import java.io.InputStreamReader;
- import java.net.URI;
- import java.util.HashSet;
- import java.util.Iterator;
- import java.util.LinkedHashSet;
- import java.util.Set;
- import java.util.regex.Pattern;
- import org.apache.hadoop.conf.Configuration;
- import org.apache.hadoop.fs.FSDataInputStream;
- import org.apache.hadoop.fs.FileSystem;
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.io.LongWritable;
- import org.apache.hadoop.io.NullWritable;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.mapreduce.Job;
- import org.apache.hadoop.mapreduce.Mapper;
- import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
- import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
- public class SortAndCut {
- /**
- * sort and cut the items
- */
- public static class M extends Mapper<LongWritable,Text,NullWritable,Text>{
- private LinkedHashSet<String> list=new LinkedHashSet<String>();
- private Pattern splitter=Pattern.compile("[ ]*[ ,|\t]");
- public void setup(Context context) throws IOException{
- String input=context.getConfiguration().get("FLIST");
- FileSystem fs=FileSystem.get(URI.create(input),context.getConfiguration());
- Path path=new Path(input);
- FSDataInputStream in1=fs.open(path);
- InputStreamReader isr1=new InputStreamReader(in1);
- BufferedReader br=new BufferedReader(isr1);
- String line;
- while((line=br.readLine())!=null){
- String[] str=line.split("\t");
- if(str.length>0){
- list.add(str[0]);
- }
- }
- }
- // map
- public void map(LongWritable key,Text value,Context context) throws IOException, InterruptedException{
- String [] items=splitter.split(value.toString());
- Set<String> set=new HashSet<String>();
- set.clear();
- for(String s:items){
- set.add(s);
- }
- Iterator<String> iter=list.iterator();
- StringBuffer sb=new StringBuffer();
- sb.setLength(0);
- int num=0;
- while(iter.hasNext()){
- String item=iter.next();
- if(set.contains(item)){
- sb.append(item+",");
- num++;
- }
- }
- if(num>0){
- context.write(NullWritable.get(), new Text(sb.toString()));
- }
- }
- }
- public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
- // TODO Auto-generated method stub
- if(args.length!=3){
- System.out.println("Usage: <input><output><fListPath>");
- System.exit(1);
- }
- String input=args[0];
- String output=args[1];
- String fListPath=args[2];
- Configuration conf=new Configuration();
- conf.set("FLIST", fListPath);
- Job job=new Job(conf,"the sort and cut the items job");
- job.setJarByClass(SortAndCut.class);
- job.setMapperClass(M.class);
- job.setNumReduceTasks(0);
- job.setOutputKeyClass(NullWritable.class);
- job.setOutputValueClass(Text.class);
- FileInputFormat.setInputPaths(job, new Path(input));
- FileOutputFormat.setOutputPath(job, new Path(output));
- boolean succeed=job.waitForCompletion(true);
- if(succeed){
- System.out.println(job.getJobName()+" succeed ... ");
- }
- }
- }
在本阶段的Mapper的setup中读取frequence file到一个LinkedHashSet(可以保持原始的插入顺序)中,然后在map中针对一个事务输出这个LinkedHashSet,不过限制输出是在这个事务中出现的项目而已。
第三步:步骤4和步骤5,代码如下:
OutRules.java
- package org.fansy.date1108.fpgrowth.twodimension;
- import java.io.IOException;
- import java.util.HashMap;
- import java.util.Iterator;
- import java.util.Map.Entry;
- import java.util.Stack;
- import java.util.TreeSet;
- import org.apache.hadoop.conf.Configuration;
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.io.LongWritable;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.mapreduce.Job;
- import org.apache.hadoop.mapreduce.Mapper;
- import org.apache.hadoop.mapreduce.Reducer;
- import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
- import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
- public class OutRules {
- public static class M extends Mapper<LongWritable,Text,Text,Text>{
- public void map(LongWritable key,Text value,Context context) throws IOException, InterruptedException{
- String str=value.toString();
- String[] s=str.split(",");
- if(s.length<=1){
- return;
- }
- Stack<String> stack=new Stack<String>();
- for(int i=0;i<s.length;i++){
- stack.push(s[i]);
- }
- int num=str.length();
- while(stack.size()>1){
- num=num-2;
- context.write(new Text(stack.pop()),new Text(str.substring(0,num)));
- }
- }
- }
- // Reducer
- public static class R extends Reducer<Text ,Text,Text,Text>{
- private int minConfidence=0;
- public void setup(Context context){
- String str=context.getConfiguration().get("MIN");
- try {
- minConfidence=Integer.parseInt(str);
- } catch (NumberFormatException e) {
- // TODO Auto-generated catch block
- minConfidence=3;
- }
- }
- public void reduce(Text key,Iterable<Text> values,Context context) throws IOException, InterruptedException{
- HashMap<String,Integer> hm=new HashMap<String ,Integer>();
- for(Text v:values){
- String[] str=v.toString().split(",");
- for(int i=0;i<str.length;i++){
- if(hm.containsKey(str[i])){
- int temp=hm.get(str[i]);
- hm.put(str[i], temp+1);
- }else{
- hm.put(str[i], 1);
- }
- }
- }
- // end of for
- TreeSet<String> sss=new TreeSet<String>(new MyComparator(" "));
- Iterator<Entry<String,Integer>> iter=hm.entrySet().iterator();
- while(iter.hasNext()){
- Entry<String,Integer> k=iter.next();
- if(k.getValue()>minConfidence&&!key.toString().equals(k.getKey())){
- sss.add(k.getKey()+" "+k.getValue());
- }
- }
- Iterator<String> iters=sss.iterator();
- StringBuffer sb=new StringBuffer();
- while(iters.hasNext()){
- sb.append(iters.next()+"|");
- }
- context.write(key, new Text(":\t"+sb.toString()));
- }
- }
- public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
- // TODO Auto-generated method stub
- if(args.length!=3){
- System.out.println("Usage: <input><output><min_confidence>");
- System.exit(1);
- }
- String input=args[0];
- String output=args[1];
- String minConfidence=args[2];
- Configuration conf=new Configuration();
- conf.set("MIN", minConfidence);
- Job job=new Job(conf,"the out rules job");
- job.setJarByClass(OutRules.class);
- job.setMapperClass(M.class);
- job.setNumReduceTasks(1);
- job.setReducerClass(R.class);
- job.setOutputKeyClass(Text.class);
- job.setOutputValueClass(Text.class);
- FileInputFormat.setInputPaths(job, new Path(input));
- FileOutputFormat.setOutputPath(job, new Path(output));
- boolean succeed=job.waitForCompletion(true);
- if(succeed){
- System.out.println(job.getJobName()+" succeed ... ");
- }
- }
- }
在map阶段使用了Stack 和字符串操作实现类似下面的功能:
- input:p,x,z,y,a,b
- output:
- b:p,x,z,y,a
- a:p,x,z,y
- y:p,x,z
- z:p,x
- x:p
在reduce阶段只是统计下项目出现的次数而已,用到了一个HashMap,又如果输出是根据项目出现的次数从大到小的一个排序那就更好了,所以又用到了TreeSet.
其中上面所有的输出文件中的格式都只是拼串而已,所以其中的格式可以按照自己的要求进行更改。
比如,我的输出如下:
- 0 : 39 125|48 99|32 44|41 37|38 26|310 17|5 16|65 14|1 13|89 13|1144 12|225 12|60 11|604 11|
- 1327 10|237 10|101 9|147 9|270 9|533 9|9 9|107 8|11 8|117 8|170 8|271 8|334 8|549 8|62 8|812 8|10 7|
- 1067 7|12925 7|23 7|255 7|279 7|548 7|783 7|14098 6|2 6|208 6|22 6|36 6|413 6|789 6|824 6|961 6|110 5|
- 120 5|12933 5|201 5|2238 5|2440 5|2476 5|251 5|286 5|2879 5|3 5|4105 5|415 5|438 5|467 5|475 5|479 5|49 5|
- 592 5|675 5|715 5|740 5|791 5|830 5|921 5|9555 5|976 5|979 5|1001 4|1012 4|1027 4|1055 4|1146 4|12 4|13334 4|
- 136 4|1393 4|16 4|1600 4|165 4|167 4|1819 4|1976 4|2051 4|2168 4|2215 4|2284 4|2353 4|2524 4|261 4|267 4|269 4|
- 27 4|2958 4|297 4|3307 4|338 4|420 4|4336 4|4340 4|488 4|4945 4|5405 4|58 4|589 4|75 4|766 4|795 4|809 4|880 4|8978 4|916 4|94 4|956 4|
冒号前面是项目,后面的39是项目再后面是<0,39>出现的次数,即125次,<0,48>出现的次数是99次;
总结,mahout的源代码确实比较难啃,所以要先对算法非常熟悉,然后去看源码的话 应该会比较容易点;
http://blog.csdn.net/fansy1990/article/details/8160956