Endian Bitfiled

Endianess是个比较tricky的问题,特别是当数据在不同类型间转换时。

先看看在一台32位的little-endian机器上,以下代码的行为:

C代码 收藏代码
  1. #include<stdio.h>//memcpy
  2. #include<stdlib.h>//printf
  3. typedefstruct{
  4. chara;
  5. charb;
  6. charc;
  7. chard;
  8. }st;
  9. voidmain(){
  10. sts;
  11. memcpy(&s,"RednaxelaFX",sizeof(s));
  12. printf("sizeof(s)=%d\n",sizeof(s));//4
  13. printf("%X\n",s);//6E646552
  14. printf("%c,%c,%c,%c\n",s.a,s.b,s.c,s.d);//R,e,d,n
  15. }


在32位x86上有4字节的对齐,正好4个char就是4字节于是st中没有padding。可以看到,struct中的成员是按声明顺序从低地址到高地址排列的。C99规范的6.7.2.1规定了这点。一个数组是一块连续的、有序的空间,而一个字符串是一个char数组,所以可以看到s.a, s.b, s.c, s.d跟字符串(char数组)的开头4个字符(字节)对应:'R' 'e' 'd' 'n'(52 65 64 6E)分成4段:(| 52 | 65 | 64 | 6E |)分别对应s.a到s.d。
但将该struct解释为一个32位的整型,并以十六进制的方式显示出来,则会发现字节的顺序颠倒了过来:
原本'R' 'e' 'd' 'n'的十六进制表示是52 65 64 6E;转换为一个整型之后,则变为0x6E646552,字节的顺序正好反了过来。注意是字节而不是位的顺序反了过来,字节内的位的顺序依然保持不变。

这体现了little-endian机器上对数据解释方式的不同。在内存中的数据在参与运算前会先加载到寄存器中,字节序(endian)的差异就在这一步上:如果是big-endian,则读到寄存器的数据的字节序跟内存中的一样;反之如果是little-endian,则读到寄存器的数据的字节序跟内存中的相反。
说“相反”,到底在多大的范围内“相反”呢?这就要看运算涉及的数据类型(特指原始数据类型dword/word/byte等)的宽度了:数据类型有多宽,就在多少字节间需要将字节顺序反转过来。如果上面的st中不是含有4个char而是含有两个short,那么在32位x86上的执行结果就会变成:

C代码 收藏代码
  1. #include<stdio.h>
  2. #include<stdlib.h>
  3. typedefstruct{
  4. shorta;
  5. shortb;
  6. }st;
  7. voidmain(){
  8. sts;
  9. memcpy(&s,"RednaxelaFX",sizeof(s));
  10. printf("sizeof(s)=%d\n",sizeof(s));//4
  11. printf("%X\n",s);//6E646552
  12. printf("%X,%X\n",s.a,s.b);//6552,6E64
  13. }


也就是把'R' 'e' 'd' 'n'(52 65 64 6E)分成两段(| 52 65 | 64 6E |),然后将字节的顺序反转过来解释为整型数字(0x6552,0x6E64)。直接解释为一个32位整型的时候,'R' 'e' 'd' 'n'(52 65 64 6E)分成一段(| 52 65 64 6E |),并在这一段内反转字节顺序得到0x6E646552。
前面用4个char为例时,因为每个单元的数据本身就只有1字节,反转不反转没有差别,所以无论是在big-endian还是在little-endian机器上执行的结果都会是一样的。

再次强调:字节序只影响解释数据时字节间的顺序,不影响每个字节内的位的顺序。

===========================================================================

那么结合C struct里的bitfield又会怎样的?
还是在C99规范的6.7.2.1节里,规范规定了可以对struct中的field显式指定宽度(以bit为单位);显式指定了宽度的field被称为bit-field。规范中同一小节中的第10点有如下说明:

引用
An implementation may allocate any addressable storage unit large enough to hold a bitfield. If enough space remains, a bit-field that immediately follows another bit-field in a structure shall be packed into adjacent bits of the same unit. If insufficient space remains, whether a bit-field that does not fit is put into the next unit or overlaps adjacent units is implementation-defined. The order of allocation of bit-fields within a unit (high-order to low-order or low-order to high-order) is implementation-defined.The alignment of the addressable storage unit is unspecified.


根据该说明,规范留下了许多故意未定义的地方,包括红字标出的:同一单元内排列bit-field的顺序未定义。所以我们无法根据规范确定同一组bit-field到底哪个在前哪个在后。

虽然如此,具体到某个机器上某个编译器所编译出来的结果还是需要解释的。这里以32位x86搭配VC9/GCC3.4为例,这两个编译器在这个例子中行为一样。观察下面代码

C代码 收藏代码
  1. #include<stdio.h>
  2. #include<stdlib.h>
  3. typedefstruct{
  4. inta:5;
  5. int:2;
  6. intb:2;
  7. }bitstruct;
  8. voidmain(){
  9. bitstructb;
  10. memcpy(&b,"RednaxelaFX",sizeof(b));
  11. printf("sizeof(b)=%d\n",sizeof(b));//4
  12. printf("%X\n",b);//6E646552
  13. printf("%X,%X\n",b.a,b.b);//FFFFFFF2,FFFFFFFE
  14. printf("%d,%d\n",b.a,b.b);//-14,-2
  15. }


例子中的bitstruct中有3个bit-field,第一个是名字为a的5位带符号整型,第二个是匿名的2位带符号整形,第三个是名字为b的2位带符号整型,加起来一共是9位,但32位x86上有4字节对齐的要求,所以经过padding后,bitstruct的宽度是4字节(32位)。从存储单元的角度看,1个dword(32位)就是1个存储单元,bitstruct中包含一个存储单元,并且其中的3个成员都在这个存储单元中。bitstruct.a占有“前”5位,匿名field占有紧接着的2位,然后bitstruct.b占有接下来的2位(注意“前”到底是从哪边开始在规范中并没有定义)。
这个宽度与前面两个例子中的st一样,当然执行到printf("%X\n", b);这句的时候结果也一样。关键就在这其中的bit-field是如何解释成-14和-2的。

从结果来看,可以知道:bitstruct的3个field都在同一个存储单元内,并且由于x86是little-endian的,数据从内存读到寄存器之后字节序就反了过来,高位字节到低位字节的顺序是“从右向左”;对应的,解释bitstruct中的各field时也从右向左来读。
寄存器中的b:
'n' 'd' 'e' 'R'
6E 64 65 52
用二进制表示就是:
01101110 01100100 01100101 01010010
“从右向左”来数宽度,最靠右的5位是b.a,其左边2位是匿名field,然后再左边2位是b.b。注意:从右向左数的是宽度,不是数据内容的位的顺序。
那么就有(二进制):
b.a: 10010
b.b: 10
由于这两个field是带符号的整型,读出来的时候需要做带符号扩展到一个int,于是它们就分别扩展到(十六进制):
b.a: FFFFFFF2
b.b: FFFFFFFE
换回用普通的带符号十进制表示也就是:
b.a: -14
b.b: -2

如果还是觉得没转过脑筋来,那么这样看:实际由编译器编译出来会像这样:(只是用于表现概念)

C代码 收藏代码
  1. bitstructb;
  2. inttemp;
  3. //assigntob,makesomechanges,whatever...
  4. //here'swhat'ssupposedtobe"temp=b.a":
  5. temp=(int)b;
  6. temp<<=27;//27==32-5
  7. temp>>=27;//27==32-5
  8. //andhere'swhat'ssupposedtobe"temp=b.b":
  9. temp=(int)b;
  10. temp<<=23;//23==32-5-2-2
  11. temp>>=30;//30==32-2


注意:
1. temp = (int)b;这里,把bitstruct里的数据解释为单个32位整型时,little-endian的作用就体现出来了;在4个字节的范围内字节的顺序需要反转过来。
2. 左移27位再右移27位与直接拿0x01F来做mask是不等价的:前者的右移是带符号的,而后者直接把符号掩盖掉了。

--------------------------------------------------------------------------

需要在说明一次,规范中并没有规定一定要按照这个顺序,只是这个例子选用的机器+编译器组合中有这样的行为而已。bit-field在存储单元内安排的顺序如何从一般程序中是看不出来的,因为:

引用
The unary & (address-of) operator cannot be applied to a bit-field object; thus, there are no pointers to or arrays of bit-field objects.


无法获得单一bit-field的地址(但可以获得这个bit-field所在的存储单元的起始地址),所以一般程序无从得知到底bit-field是从哪边开始存的;编译器会生成合适的位移指令序列来得到bit-field的值/对bit-field赋值。程序不应该依赖于bit-field存储的顺序。

你可能感兴趣的:(File)