算法导论习题[Exercises 32.1-3 ]

Suppose that pattern P and text T are randomly chosen strings of length m and n, respectively, from the d-ary alphabet Σd = {0, 1, . . . , d - 1}, where d 2. Show that the expected number of character-to-character comparisons made by the implicit loop in line 4 of the naive algorithm is

over all executions of this loop. (Assume that the naive algorithm stops comparing characters for a given shift once a mismatch is found or the entire pattern is matched.) Thus, for randomly chosen strings, the naive algorithm is quite efficient.
证明:
P 为单个字符比较匹配的概率, 1-P 为失配的概率 ,P=d-1
比较次数 概率 比较次数 * 概率
1 1 - P 1 - P
2 P 1 - P 2P - 2P2
3 P2 (1 - P) 3P - 3P3
m-1 Pm-2(1 - P) (m-1)Pm-2 - (m-1) Pm-1
m Pm-1(1 - P)+Pm-1P (m)Pm-1 - (m) Pm+ (m)Pm
E = ( 比较次数 * 概率 ) = 1+P+P2+…..Pm-1 = (1-Pm)/1-P = (1- d –m )/( 1- d-1)
f(x) =(1- x –m )/( 1- x-1), f x )求导可知,在 m>1,x>=2 时导数为负,则 f(x) x>=2 严格减函数,所以 f(x)<=f(2)<=2. 证毕。
由此可知,对于随机的字符串,朴素的字符串比较还是有效的。

你可能感兴趣的:(算法,F#)