android日志系统中定义了设备驱动的实现代码位于kernel/common/drivers/staging/android/logger.h和kernel/common/drivers/staging/android/logger.c中。
首先,我们阅读logger.h文件代码。
struct logger_entry { __u16 len; /* length of the payload */ __u16 __pad; /* no matter what, we get 2 bytes of padding */ __s32 pid; /* generating process's pid */ __s32 tid; /* generating process's tid */ __s32 sec; /* seconds since Epoch */ __s32 nsec; /* nanoseconds */ char msg[0]; /* the entry's payload */ }; /* 结构体logger_entry定义了日志系统数据的头部信息,其中len定义了负载的长度,__pad主要是用作数据域的对齐,提高数据结构访问的效率。pid是输出日志信息的进程的pid, tid是输出日志信息的进程的tid。sec和nsec构成了日志输出时的时间。msg代表负载的开始处。负载就是我们要输出的一些字符串信息,它们的大小本身是不会影响logger_entry结构体本身的大小。事实上,logger_entry结构体可视为一个可变大小的结构体定义的范例。 */ #define LOGGER_LOG_RADIO "log_radio" /* radio-related messages */ #define LOGGER_LOG_EVENTS "log_events" /* system/hardware events */ #define LOGGER_LOG_MAIN "log_main" /* everything else */ //上述三个宏定义了日志信息的三种类型。 #define LOGGER_ENTRY_MAX_LEN (4*1024) #define LOGGER_ENTRY_MAX_PAYLOAD \ (LOGGER_ENTRY_MAX_LEN - sizeof(struct logger_entry)) //上述宏实际上定义了日志缓冲区的最大值。 #define __LOGGERIO 0xAE //定义ioctl命令码的设备类型为0xAE #define LOGGER_GET_LOG_BUF_SIZE _IO(__LOGGERIO, 1) /* size of log */ #define LOGGER_GET_LOG_LEN _IO(__LOGGERIO, 2) /* used log len */ #define LOGGER_GET_NEXT_ENTRY_LEN _IO(__LOGGERIO, 3) /* next entry len */ #define LOGGER_FLUSH_LOG _IO(__LOGGERIO, 4) /* flush log */
再来阅读logger.c代码:
/* * struct logger_log - represents a specific log, such as 'main' or 'radio' * * This structure lives from module insertion until module removal, so it does * not need additional reference counting. The structure is protected by the * mutex 'mutex'. */ struct logger_log { unsigned char * buffer; /* the ring buffer itself */ struct miscdevice misc; /* misc device representing the log */ wait_queue_head_t wq; /* wait queue for readers */ struct list_head readers; /* this log's readers */ struct mutex mutex; /* mutex protecting buffer */ size_t w_off; /* current write head offset */ size_t head; /* new readers start here */ size_t size; /* size of the log */ }; /*该结构体定义了日志的结构,在该数据结构中,定义了一个环形缓冲区*/ /* * struct logger_reader - a logging device open for reading * * This object lives from open to release, so we don't need additional * reference counting. The structure is protected by log->mutex. */ struct logger_reader { struct logger_log * log; /* associated log */ struct list_head list; /* entry in logger_log's list */ size_t r_off; /* current read head offset */ }; /*该数据结构定义了一个设备结构体,用于读日志信息*/ /* logger_offset - returns index 'n' into the log via (optimized) modulus */ #define logger_offset(n) ((n) & (log->size - 1)) /*通过模运算返回索引号n在log中对应的offset。*/ /* * file_get_log - Given a file structure, return the associated log * * This isn't aesthetic. We have several goals: * * 1) Need to quickly obtain the associated log during an I/O operation * 2) Readers need to maintain state (logger_reader) * 3) Writers need to be very fast (open() should be a near no-op) * * In the reader case, we can trivially go file->logger_reader->logger_log. * For a writer, we don't want to maintain a logger_reader, so we just go * file->logger_log. Thus what file->private_data points at depends on whether * or not the file was opened for reading. This function hides that dirtiness. */ static inline struct logger_log * file_get_log(struct file *file) { /*当在读模式下时*/ if (file->f_mode & FMODE_READ) { struct logger_reader *reader = file->private_data; return reader->log; } else return file->private_data; } /*返回与file相关联的logger_log结构体。*/ /* * get_entry_len - Grabs the length of the payload of the next entry starting * from 'off'. * * Caller needs to hold log->mutex. */ static __u32 get_entry_len(struct logger_log *log, size_t off) { __u16 val; //log->buffer的开始处是头,而头的前两个字节记录了负载的长度 switch (log->size - off) { case 1: memcpy(&val, log->buffer + off, 1); memcpy(((char *) &val) + 1, log->buffer, 1); break; default: memcpy(&val, log->buffer + off, 2); } //因为负载的长度不包含头的数据结构大小,所以要加上头部大小 return sizeof(struct logger_entry) + val; } /*返回位于下一个位于off处的日志项负载的大小,注意该大小包括日志项结构体本身的大小*/ /* * do_read_log_to_user - reads exactly 'count' bytes from 'log' into the * user-space buffer 'buf'. Returns 'count' on success. * * Caller must hold log->mutex. */ static ssize_t do_read_log_to_user(struct logger_log *log, struct logger_reader *reader, char __user *buf, size_t count) { size_t len; /*因为缓冲区是环形的,所以当从offset开始到缓冲区的最后一位之间的大小小于count时,就要分两步读,第一次读到缓冲区末尾,第二次从缓冲区开始处读取剩余的字节大小的数据*/ /* * We read from the log in two disjoint operations. First, we read from * the current read head offset up to 'count' bytes or to the end of * the log, whichever comes first. */ len = min(count, log->size - reader->r_off); if (copy_to_user(buf, log->buffer + reader->r_off, len)) return -EFAULT; /* * Second, we read any remaining bytes, starting back at the head of * the log. */ /*当count == len时,表明缓冲区从当前位置到结尾处的大小大于count*/ if (count != len) if (copy_to_user(buf + len, log->buffer, count - len)) return -EFAULT; //重新计算当前的offset reader->r_off = logger_offset(reader->r_off + count); return count; } /*返回log中的数据到用户空间的缓冲区*/ /* * logger_read - our log's read() method * * Behavior: * * - O_NONBLOCK works * - If there are no log entries to read, blocks until log is written to * - Atomically reads exactly one log entry * * Optimal read size is LOGGER_ENTRY_MAX_LEN. Will set errno to EINVAL if read * buffer is insufficient to hold next entry. */ static ssize_t logger_read(struct file *file, char __user *buf, size_t count, loff_t *pos) { struct logger_reader *reader = file->private_data; struct logger_log *log = reader->log; ssize_t ret; DEFINE_WAIT(wait); //定义一个等待队列项,它将在等待队列log->wq上休眠 start: while (1) { prepare_to_wait(&log->wq, &wait, TASK_INTERRUPTIBLE); //将当前进程加入等待队列中,等待可中断 mutex_lock(&log->mutex); ret = (log->w_off == reader->r_off); mutex_unlock(&log->mutex); if (!ret) //只要log->w_off != reader->r_off即可读 break; //在非阻塞状态下,立即返回 if (file->f_flags & O_NONBLOCK) { ret = -EAGAIN; break; } //处理收到的系统信号 if (signal_pending(current)) { ret = -EINTR; break; } schedule(); } finish_wait(&log->wq, &wait); if (ret) return ret; mutex_lock(&log->mutex); /* is there still something to read or did we race? */ if (unlikely(log->w_off == reader->r_off)) { mutex_unlock(&log->mutex); goto start; } /* get the size of the next entry */ ret = get_entry_len(log, reader->r_off); if (count < ret) { ret = -EINVAL; goto out; } /* get exactly one entry from the log */ ret = do_read_log_to_user(log, reader, buf, ret); out: mutex_unlock(&log->mutex); return ret; } /* * get_next_entry - return the offset of the first valid entry at least 'len' * bytes after 'off'. * * Caller must hold log->mutex. */ static size_t get_next_entry(struct logger_log *log, size_t off, size_t len) { size_t count = 0; //找到第一个超过当off至少len长的第一个合法的日志项的offset。 do { size_t nr = get_entry_len(log, off); off = logger_offset(off + nr); count += nr; } while (count < len); return off; } /* * clock_interval - is a < c < b in mod-space? Put another way, does the line * from a to b cross c? */ static inline int clock_interval(size_t a, size_t b, size_t c) { if (b < a) { if (a < c || b >= c) return 1; } else { if (a < c && b >= c) return 1; } return 0; } /* * fix_up_readers - walk the list of all readers and "fix up" any who were * lapped by the writer; also do the same for the default "start head". * We do this by "pulling forward" the readers and start head to the first * entry after the new write head. * * The caller needs to hold log->mutex. */ static void fix_up_readers(struct logger_log *log, size_t len) { size_t old = log->w_off; size_t new = logger_offset(old + len); struct logger_reader *reader; //修正log->head, 将其后移len if (clock_interval(old, new, log->head)) log->head = get_next_entry(log, log->head, len); //修正所有当前的reader->r_off与log->w_off的距离小于len的日志项,将reader->r_off后移len个单位。 list_for_each_entry(reader, &log->readers, list) if (clock_interval(old, new, reader->r_off)) reader->r_off = get_next_entry(log, reader->r_off, len); } /* * do_write_log - writes 'len' bytes from 'buf' to 'log' * * The caller needs to hold log->mutex. */ static void do_write_log(struct logger_log *log, const void *buf, size_t count) { size_t len; //写入count个字节的数据, len = min(count, log->size - log->w_off); memcpy(log->buffer + log->w_off, buf, len); //当count-len大于零时,将剩余的数据从开头处开始写入 if (count != len) memcpy(log->buffer, buf + len, count - len); log->w_off = logger_offset(log->w_off + count); } /* * do_write_log_user - writes 'len' bytes from the user-space buffer 'buf' to * the log 'log' * * The caller needs to hold log->mutex. * * Returns 'count' on success, negative error code on failure. */ static ssize_t do_write_log_from_user(struct logger_log *log, const void __user *buf, size_t count) { size_t len; len = min(count, log->size - log->w_off); if (len && copy_from_user(log->buffer + log->w_off, buf, len)) return -EFAULT; if (count != len) if (copy_from_user(log->buffer, buf + len, count - len)) return -EFAULT; log->w_off = logger_offset(log->w_off + count); return count; } /* * logger_aio_write - our write method, implementing support for write(), * writev(), and aio_write(). Writes are our fast path, and we try to optimize * them above all else. */ ssize_t logger_aio_write(struct kiocb *iocb, const struct iovec *iov, unsigned long nr_segs, loff_t ppos) { struct logger_log *log = file_get_log(iocb->ki_filp); size_t orig = log->w_off; struct logger_entry header; struct timespec now; ssize_t ret = 0; now = current_kernel_time(); header.pid = current->tgid; header.tid = current->pid; header.sec = now.tv_sec; header.nsec = now.tv_nsec; header.len = min_t(size_t, iocb->ki_left, LOGGER_ENTRY_MAX_PAYLOAD); /* null writes succeed, return zero */ if (unlikely(!header.len)) return 0; mutex_lock(&log->mutex); /* * Fix up any readers, pulling them forward to the first readable * entry after (what will be) the new write offset. We do this now * because if we partially fail, we can end up with clobbered log * entries that encroach on readable buffer. */ fix_up_readers(log, sizeof(struct logger_entry) + header.len); do_write_log(log, &header, sizeof(struct logger_entry)); while (nr_segs-- > 0) { size_t len; ssize_t nr; /* figure out how much of this vector we can keep */ len = min_t(size_t, iov->iov_len, header.len - ret); /* write out this segment's payload */ nr = do_write_log_from_user(log, iov->iov_base, len); if (unlikely(nr < 0)) { log->w_off = orig; mutex_unlock(&log->mutex); return nr; } iov++; ret += nr; } mutex_unlock(&log->mutex); /* wake up any blocked readers */ wake_up_interruptible(&log->wq); return ret; } static struct logger_log * get_log_from_minor(int); /* * logger_open - the log's open() file operation * * Note how near a no-op this is in the write-only case. Keep it that way! */ static int logger_open(struct inode *inode, struct file *file) { struct logger_log *log; int ret; ret = nonseekable_open(inode, file); if (ret) return ret; log = get_log_from_minor(MINOR(inode->i_rdev)); if (!log) return -ENODEV; if (file->f_mode & FMODE_READ) { struct logger_reader *reader; reader = kmalloc(sizeof(struct logger_reader), GFP_KERNEL); if (!reader) return -ENOMEM; reader->log = log; INIT_LIST_HEAD(&reader->list); mutex_lock(&log->mutex); //设置reader->r_off的初始值为log当前的读位置 reader->r_off = log->head; list_add_tail(&reader->list, &log->readers); mutex_unlock(&log->mutex); file->private_data = reader; } else file->private_data = log; return 0; } /* * logger_release - the log's release file operation * * Note this is a total no-op in the write-only case. Keep it that way! */ static int logger_release(struct inode *ignored, struct file *file) { //只有在读模式下才会去释放分配的内存空间 if (file->f_mode & FMODE_READ) { struct logger_reader *reader = file->private_data; list_del(&reader->list); kfree(reader); } return 0; } /* * logger_poll - the log's poll file operation, for poll/select/epoll * * Note we always return POLLOUT, because you can always write() to the log. * Note also that, strictly speaking, a return value of POLLIN does not * guarantee that the log is readable without blocking, as there is a small * chance that the writer can lap the reader in the interim between poll() * returning and the read() request. */ static unsigned int logger_poll(struct file *file, poll_table *wait) { struct logger_reader *reader; struct logger_log *log; unsigned int ret = POLLOUT | POLLWRNORM; //总是可写的 if (!(file->f_mode & FMODE_READ)) return ret; reader = file->private_data; log = reader->log; //将当前进行添加到wait指定的等待列表(轮询表)中 poll_wait(file, &log->wq, wait); mutex_lock(&log->mutex); if (log->w_off != reader->r_off) ret |= POLLIN | POLLRDNORM; mutex_unlock(&log->mutex); return ret; } //ioctl实现函数 static long logger_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct logger_log *log = file_get_log(file); struct logger_reader *reader; long ret = -ENOTTY; mutex_lock(&log->mutex); switch (cmd) { case LOGGER_GET_LOG_BUF_SIZE: ret = log->size; break; case LOGGER_GET_LOG_LEN: if (!(file->f_mode & FMODE_READ)) { ret = -EBADF; break; } reader = file->private_data; if (log->w_off >= reader->r_off) ret = log->w_off - reader->r_off; else ret = (log->size - reader->r_off) + log->w_off; break; case LOGGER_GET_NEXT_ENTRY_LEN: if (!(file->f_mode & FMODE_READ)) { ret = -EBADF; break; } reader = file->private_data; if (log->w_off != reader->r_off) ret = get_entry_len(log, reader->r_off); else ret = 0; break; case LOGGER_FLUSH_LOG: if (!(file->f_mode & FMODE_WRITE)) { ret = -EBADF; break; } list_for_each_entry(reader, &log->readers, list) reader->r_off = log->w_off; log->head = log->w_off; ret = 0; break; } mutex_unlock(&log->mutex); return ret; } //定义字符设备操作 static struct file_operations logger_fops = { .owner = THIS_MODULE, .read = logger_read, .aio_write = logger_aio_write, .poll = logger_poll, .unlocked_ioctl = logger_ioctl, .compat_ioctl = logger_ioctl, .open = logger_open, .release = logger_release, }; /* * Defines a log structure with name 'NAME' and a size of 'SIZE' bytes, which * must be a power of two, greater than LOGGER_ENTRY_MAX_LEN, and less than * LONG_MAX minus LOGGER_ENTRY_MAX_LEN. */ #define DEFINE_LOGGER_DEVICE(VAR, NAME, SIZE) \ static unsigned char _buf_ ## VAR[SIZE]; \ static struct logger_log VAR = { \ .buffer = _buf_ ## VAR, \ .misc = { \ .minor = MISC_DYNAMIC_MINOR, \ .name = NAME, \ .fops = &logger_fops, \ .parent = NULL, \ }, \ .wq = __WAIT_QUEUE_HEAD_INITIALIZER(VAR .wq), \ .readers = LIST_HEAD_INIT(VAR .readers), \ .mutex = __MUTEX_INITIALIZER(VAR .mutex), \ .w_off = 0, \ .head = 0, \ .size = SIZE, \ }; //分别定义三个不同的字符设备 DEFINE_LOGGER_DEVICE(log_main, LOGGER_LOG_MAIN, 64*1024) DEFINE_LOGGER_DEVICE(log_events, LOGGER_LOG_EVENTS, 256*1024) DEFINE_LOGGER_DEVICE(log_radio, LOGGER_LOG_RADIO, 64*1024) //根据次设备号返回相应的设备 static struct logger_log * get_log_from_minor(int minor) { if (log_main.misc.minor == minor) return &log_main; if (log_events.misc.minor == minor) return &log_events; if (log_radio.misc.minor == minor) return &log_radio; return NULL; } static int __init init_log(struct logger_log *log) { int ret; //注册混杂字符设备 ret = misc_register(&log->misc); if (unlikely(ret)) { printk(KERN_ERR "logger: failed to register misc " "device for log '%s'!\n", log->misc.name); return ret; } printk(KERN_INFO "logger: created %luK log '%s'\n", (unsigned long) log->size >> 10, log->misc.name); return 0; } //字符设备初始化 static int __init logger_init(void) { int ret; ret = init_log(&log_main); if (unlikely(ret)) goto out; ret = init_log(&log_events); if (unlikely(ret)) goto out; ret = init_log(&log_radio); if (unlikely(ret)) goto out; out: return ret; } device_initcall(logger_init);